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Abstract—Epidemic evolution is the spread of a computer or
biological virus over a network. The goal is to control the speed
of the epidemic evolution with limited network control resources
and to study how users in the network can be infected. The
epidemic evolution can be modeled by a probabilistic dynamical
system over a connected graph. We consider several epidemic
evolution models in the literature, and formulate their evolution
control under a common framework that requires solving a
nonconvex optimization problem with an objective that is the
spectral radius function of a nonnegative matrix. We propose
two algorithms to tackle this optimization problem. The first
one is a suboptimal but computationally fast algorithm based on
successive convex relaxation, while the second one can compute a
global optimal solution using branch-and-bound techniques that
leverage some key inequalities in nonnegative matrix theory.
Index Terms—Epidemic evolution, spectral radius minimiza-

tion, and nonnegative matrix theory.

I. INTRODUCTION

Epidemic evolution is the spread of a computer or biological
virus over a network. How to estimate and control the spread
of an epidemic is of practical interests in cyber-physical
networks or medical epidemiology. An epidemic evolution
process can be modeled as a probabilistic dynamical systems
over a connected graph, and controlling this process can then
be suitably analyzed using systems control theory [1], [2].
In general, the stability of the evolution process is governed
by the network connectivity and the parameters associated
with the epidemic, e.g., propagation models, infection rates.
Therefore, how do epidemics spread in bio-systems or cyber-
physical networks and, how they can be controlled is a difficult
stochastic nonlinear control problem. Network resources can
be limited due to practical constraints such as deploying anti-
virus measures or due to finite capacity. The static optimization
solution is then applied as parameters to the probabilistic
dynamical system.
In the literature, a typical propagation model classifies nodes

in the network into three basic types: (i) susceptible: ones
who are healthy and prone to getting infected, (ii) infected:
ones who can infect others, and (iii) recovered: ones who
were infected before but cured for now. Different epidemic
models can be considered based on different combinations of
these three basic types. When the model takes into account the
network connectivity (graph topology), an epidemic threshold
is used to evaluate the evolution of the epidemic [3]. The
authors in [4] look at different threshold criteria and their
relationship with graph structures for epidemic spreading.

The authors in [5] introduce the epidemic threshold for a
network that is closely related to the spectral radius of the
topological matrix. The authors in [6] seek to minimize a
general aggregate cost and characterize the optimal dynamic
patching policies, relying on the homogeneous assumption
that all pairs of nodes have identical contact rate. With an
increasing popularity in mobile computing, particularly with
the rise in Bluetooth-equipped mobile devices, the authors
in [7] analyze the epidemic threshold on mobile ad-hoc
networks. The authors in [8] propose an inference technique
to find the source of a computer virus in a network. The
authors in [9] study the fundamental spreading patterns that
characterize a mobile phone virus outbreak. In these related
work, the network topology is a fundamental property that is
exploited to control epidemic spreading.
In [10], the authors formally introduce canonical epidemic

control optimization problems that are deterministic. The au-
thors propose minimizing the spectral radius (which captures
the epidemic spreading rate) of the network topology matrix
with a given amount of network control resources. However,
the applicability is limited, for example, it is assumed that the
abstracted interactive graph of the epidemic evolution has to
be symmetric or diagonally symmetrized. These assumptions
in [10] can be relaxed to broaden its applicability. It may be
more useful to generalize the epidemic topological structure
to include directed asymmetric interactive graphs since dif-
ferent nodes in the network may receive different levels of
immunization.
Our approach in this paper is to use deterministic finite

optimization theory to study the problem: given a set of
limited network resources to control the epidemic evolution,
how to optimize the rate of epidemic evolution? Motivated
by [10], we study a deterministic epidemic evolution control
framework that requires solving a nonconvex optimization
problem by minimizing a spectral radius function subject to
constraints on the control variables. We first show that the
optimal solution of the spectral radius minimization problem
resides on the boundary of the constraint set. Then, feasible
suboptimal solutions of the spectral radius minimization prob-
lem are obtained using successive convex approximation based
on geometric programming. Key tools in nonnegative matrix
theory, e.g., the Perron-Frobenius theorem and the Friedland-
Karlin inequalities, are then leveraged to find bounds that can
be tightened using the branch-and-bound method. This leads
to an algorithm that can compute the global optimal solution
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Fig. 1. Overview of the susceptible-infected model for the ith node. If the ith node is susceptible, it can be infected by receiving the virus from an infected
node j with probability Fji. On the other hand, if the ith node is infected, it can be recovered with probability δi.

of the spectral radius minimization problem.
The rest of this paper is organized as follows. We intro-

duce the system model and formulate our epidemic evolution
problem in Section II. We propose a fast successive convex
approximation algorithm to solve the problem suboptimally in
Section III. In Section IV, we propose a branch-and-bound
algorithm that leverages some key inequalities in nonnegative
matrix theory to compute the global optimal solution. In
Section V, we evaluate the performance of our algorithms
numerically. The conclusion of this paper is in Section VI.
The following notation is used in our paper. Column vec-
tors and matrices are denoted by boldfaced lowercase and
uppercase respectively. ρ(A) denotes the Perron-Frobenius
eigenvalue of a nonnegative matrixA. x(A) and y(A) denote
the Perron right and left eigenvectors of A associated with
ρ(A), respectively. I denotes the identity matrix. For a given
vector x = (x1, . . . , xL)

�

, diag(x) is a diagonal matrix
diag(x1, . . . , xL).

II. SYSTEM MODEL AND PROBLEM FORMULATION
We consider a broadcast network with L users where a virus

spreads from infected users to susceptible users. In this section,
we review two discrete-time-based linear models, namely the
multi-group model and the contact network model [10]. Let F
represent the transmission coefficient matrix, where Fij is the
infectious ratio that the ith group infects the jth group in the
multi-group model, or the ith node infects the jth node in the
contact network model. δ = (δ1, . . . , δL)

� is the recovery
vector where an infected node i recovers with probability
δi. Figure 1 shows the susceptible-infected model on the ith
node. We then construct a next-generation matrix, denoted by
G, that represents the transformation of nodes’ types at each
discrete time slot. By regarding different parameters in the
next-generation matrix as control variables, we can control
the rate of the epidemic evolution. Thus, in the following, we
formulate the optimization problem that minimizes the spectral
radius of the next-generation matrix.

A. Multi-group Model
Let us introduce the multi-group model with N groups,

and the number of nodes in each group is ni (which implies∑N

i=1 ni = L). In this case, an infected node does not recover.

Assuming the average infectious time of a node in the ith
group is τi, the infectious nodes ηi(t+ 1) of the ith group at
(t+ 1)th generation is given in terms of ηi(t) as:

ηi(t+ 1)

ni

= τi

⎛
⎝Fii

ηi(t)

ni

+
∑
j �=i

Fij

ηj(t)

nj

⎞
⎠ . (1)

Note that a node can be infected either internally by the
infected nodes in the same group or externally by the infected
nodes in the other groups. To control the epidemic spreading
rate, we introduce the following variables:
1) F̂ij = 1

ξi
Fij , ξi ∈ (0, 1], i, j = 1, . . . , N . ξ scales

the transmission coefficient matrix, and decreases the
epidemic evolution rate in the whole network. e.g., the
infected nodes are isolated.

2) F̄ij = 1
ϕi
F̂ij , ϕi ∈ (0, 1], i �= j, i, j = 1, . . . , N . Note

that F̄ is a nonnegative matrix with F̄ii = 0 for all i.
Thus, the contact rate between different groups is re-
duced, which means the restriction of nodes’ movement
within its own group.

3) τ̂ = 1
ωi
τi, ωi ∈ (0, 1], i = 1, . . . , N . We control the

infectious time of nodes by introducing the variable ωi

in each group. In practice, when anti-virus software is
used to overcome infection, ωi can be set to be infinity.

The next-generation matrix for epidemic evolution is given by:

G = τ̂ diag(ω) diag(ξ)
(
F̂d + diag(ϕ)F̄

)
, (2)

where F̂d is a diagonal matrix with F̂d

ii = F̂ii for all i.
Next, we introduce the contact network model in Section

II-B. Similar to this section, we first construct the next-
generation matrix, and then introduce the control variables to
analyze the epidemic evolution.

B. Contact Network Model
In the contact network model, an epidemic spreads by

nodes’ communication, and nodes’ movement does not depend
on any group pattern. The ith node is infected at the (t+1)th
time slot with probability pi(t+1), which is given by in terms
of p(t) as:

pi(t+ 1) =

⎛
⎝1−

L∏
j=1

(
1− Fijpj(t)

)⎞⎠+ (1− δi)pi(t), (3)
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TABLE I
SUMMARY OF THE NEXT-GENERATION MATRIX FOR EPIDEMIC EVOLUTION.

G(s) s Problem Parameters

diag(s)B
ξ B = τ̂ diag(ω)

(
F̂d + diag(ϕ)F̄

)

ω B = τ̂ diag(ξ)
(
F̂d + diag(ϕ)F̄

)

diag(d) + diag(s)B
ϕ diag(d) = τ̂ diag(ω) diag(ξ)F̂d, B = τ̂ diag(ω) diag(ξ)F̄

β d = 1− δ, B = F̃

diag(s) +B 1− δ B = diag(β)F̃

where δi is the recovery rate. Note that
∏L

j=1(1−Fijpj(t)) is
the probability that the ith node does not communicate to any
infected node, and its complement is the probability that the
ith node is infected by at least one infected node. Note that
(1 − δi)pi(t) is the probability that the infected node i does
not recover at the (t+ 1)th time slot.
Controlling the immunity (denoted as Fij = βiF̃ij , βi ∈

[0, 1], i �= j, i, j = 1, . . . , L) of each node, (3) can be
reformulated as:

pi(t+ 1) =

L∑
j=1

βiF̃ijpj(t) + (1− δi)pi(t),

since 1 −
∏L

j=1(1 − Fijpj(t)) can be well approximated by∑L

j=1 Fijpj(t). Thus, the next-generation matrix is given by:

G = diag(1− δ) + diag(β)F̃. (4)

Therefore, the epidemic evolution is dependent on the recovery
rate δ and the immunity β that can be optimized appropriately.

C. Spectral Radius Minimization Problem

The spectral radius of the next-generation matrix, denoted
by ρ(G), is a key metric that captures the spreading rate of
a virus. We consider the next-generation matrix in terms of a
control variable s which is summarized in Table I, i.e., s can
be ξ, ϕ, or ω in (2), and δ or β in (4).
In addition, we assume that s is constrained by an upper

bound u and a lower bound b, and
∑L

i=1 si cannot be less
than Γ. For feasibility, these constraints on s should implicitly
satisfy Γ ≤

∑L
i=1 ui. Then, we formulate the minimizing

speed of the epidemic evolution as the problem:

minimize ρ(G(s))

subject to
L∑

l=1

sl ≥ Γ,

b ≤ s ≤ u,
variables: s.

(5)

In general, (5) is nonconvex (due to the spectral radius
objective function), and thus it is difficult to solve.
Lemma 1: Assuming thatG(s) is irreducible, the constraint

1�s ≥ Γ in (5) is tight at optimality, i.e., 1�s� = Γ.
Proof: From Perron-Frobenius theorem [11], G(s) has a

real spectral radius, and the Perron right and left eigenvectors
associated with the spectral radius are real and strictly positive.
Let the associated right and left eigenvectors be x and y with

x > 0, y > 0, respectively. From the eigenvalue sensitivity
theory [12], [13], we have:

∂ρ(G(s))/∂si = y�(∂G(s)/∂si)
�x.

We first prove that G(s) is nondecreasing by inspecting the
first order derivative of the special cases of G(s) in Table I
which can be given respectively as follows:
1) For G(s) = diag(s)B, we have:

∂ρ(G(s))/∂si = ρ(G(s))xiyi ≥ 0.

2) For G(s) = diag(d) + diag(s)B, we have:

∂ρ(G(s))/∂si = xi

L∑
j=1

Bjiyj ≥ 0.

3) For G(s) = diag(s) + B, we have ∂ρ(G(s))/∂si ≥ 0
according to Theorem A.2 in [10].

Therefore, ρ(G(s)) is nondecreasing. Since minimizing
ρ(G(s)) chooses a feasible s as small as possible, this makes
1�s ≥ Γ tight at optimality.
In the following, we first solve (5) by successive convex

approximation in Section III. Then, we propose a branch-and-
bound method [14] to calculate the global optimal solution
for (5) in Section IV.

III. SUCCESSIVE CONVEX APPROXIMATION
In this section, we propose to approximate (5) using a

successive convex approximation technique based on geomet-
ric programming (similarly to the condensation method in
signomial programming).

Algorithm 1 (Successive Convex Approximation):

Choose a feasible initial point s(0).
1) Set αl(k) =

sl(k)∑
L
j=1 sj(k)

, l = 1, . . . , L.

2) Solve the kth approximation problem by geometric
programming:

minimize λ
subject to G(s)v ≤ λv,

L∏
l=1

(
sl

αl(k)

)αl(k)

= Γ,

b ≤ s ≤ u,
variables: s,v, λ,

(6)

whose optimal solution is denoted as s(k + 1).
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Theorem 1: Starting from any feasible initial point s(0),
s(k) converges to the local optimal solution of (5).

Proof: Using Lemma 1 and a basic result in the Perron-
Frobenius eigenvalue (cf. Chapter 4.5 in [15]):

ρ(G) = inf{λ|Gv ≤ λv for some v > 0},

we reformulate (5) to the following problem by introducing
the auxiliary variables λ and v:

minimize λ
subject to G(s)v ≤ λv,

L∑
l=1

sl = Γ,

b ≤ s ≤ u,
variables: s,v, λ.

(7)

However, (7) still cannot be turned into a geometric program
due to the posynomial equality

∑L
l=1 sl = Γ in the constraint

set of (7). Let g(s) =
∑L

l=1 sl, then we approximate g(s) with
a monomial g̃(s), such that:

g(s) ≥ g̃(s) =

L∏
l=1

(
sl
αl

)αl

. (8)

We set αl(k) = sl(k − 1)/
∑

i si(k − 1), then g̃(s) is the
best local monomial approximation to g(s) near s in the sense
of first order Taylor approximation. This leads to the use of
successive convex approximation (6).
This approximation satisfies the following properties:
1) For any fixed positive s(k), g(s(k)) = g̃(s(k)) guarantees

that any solution of the approximated problem (6) is a feasible
point of the original problem (7).
2) g(s(k)) = g̃(s(k)) also guarantees that the solution of

each approximated problem decreases the object function.
3) ∇g(s(k)) = ∇g̃(s(k)) guarantees that the Karush-Kuhn-

Tucker conditions of the original problem are satisfied after
the series of approximations converges.
Therefore, the solutions of these sequences of convex ap-

proximations given in (6) converge to a stationary point of (5).

Remark 1: The optimization problem at Step 2 is a geo-
metric program, which can be solved by an interior point
method [15]. The convergence of Algorithm 1 depends on
the initial point s(0). The output of Algorithm 1 is an upper
bound to (5), which facilitates the branch-and-bound method
proposed in the next section.

IV. GLOBAL OPTIMIZATION ALGORITHM

Although the suboptimal solution computed in Algorithm 1
by a successive convex approximation technique only provides
an upper bound for (5), the global optimal solution can be
obtained by a branch-and-bound method that uses Algorithm
1 as a submodule. We consider an initial box {s |b ≤ s ≤ u}
which is subdivided iteratively according to the upper bound
and the lower bound of (5). In the following, we discuss the
lower bounds of the cases summarized in Table I.

1) For G(s) = diag(s)B, using the Friedland-Karlin in-
equality in [16], we have:

ρ(diag(s)B) ≥ ρ(B)

L∏
l=1

s
xl(B)yl(B)
l ,

where x(B) and y(B) are the Perron right and
left eigenvectors of B, normalized such that∑L

l=1 xl(B)yl(B) = 1. Hence, the optimal value
of (5) is lower bounded by the optimal value of the
following problem:

minimize
L∑

l=1

xl(B)yl(B) log sl

subject to
L∑

l=1

sl = Γ,

b ≤ s ≤ u,
variables: s.

(9)

Although (9) is still a nonconvex problem, we replace
the objective function of (9) by its convex envelope [17]
over the box constraint set {s |b ≤ s ≤ u} to obtain
the linear program (12).

2) For G(s) = diag(d) + diag(s)B, we have:

ρ(diag(d) + diag(s)B) ≥ ρ
((

min
l=1,...,L

dl
)
I+ diag(s)B

)
= ρ(diag(s)B) + min

l=1,...,L
dl.

Hence, the optimal value of (5) is bounded by the
optimal value of the following problem:

minimize min
l=1,...,L

dl + ρ(diag(s)B)

subject to
L∑

l=1

sl = Γ,

b ≤ s ≤ u,
variables: s.

(10)

Thus, similar to the case of G(s) = diag(s)B, the
convex envelope of (10) is also obtained by the linear
program in (12).

3) For G(s) = diag(s)+B, we first state the inequality in
nonnegative matrix theory [18]:

ρ(D)

ρ(A)
≥

L∏
l=1

L∏
j=1

(
Dlj

Alj

)Aljxl(A)yj (A)

ρ(A)

,

where A and D are irreducible nonnegative matrices.
Letting A = B and D = diag(s) +B respectively, we
have:

ρ(diag(s) +B) ≥ ρ(B)

L∏
l=1

(
sl + Bll

Bll

)Bllxl(B)yl(B)

ρ(B)

.
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Likewise, the optimal value of (5) is bounded by the
optimal value of the following problem:

minimize
L∑

l=1

Bllxl(B)yl(B) log(sl +Bll)

subject to
L∑

l=1

sl = Γ,

b ≤ s ≤ u,
variables: s.

(11)

Following the same step for the case G(s) = diag(s)B,
we also replace the objective function of (11) by its
convex envelope over the box constraint set {s |b ≤
s ≤ u} to obtain the linear program in (13).

By leveraging the above inequalities on the spectral radius
and exploiting the branch-and-bound method [14], we propose
the following algorithm to solve (5) optimally.

Algorithm 2 (Global Optimization Algorithm):

1) Initialization
Set k = 0 and Q0 = {Ω0}, where Ω0 is the
initial rectangular set [b, u]. Obtain the lower bound
L0 = Vl(Ω0) for (5) by solving the following linear
program.
If G(s) = diag(s)B or G(s) = diag(d) + diag(s)B:

minimize
L∑

l=1

log ul − log bl
ul − bl

xl(B)yl(B)sl

subject to
L∑

l=1

sl = Γ,

b ≤ s ≤ u,
variables: s.

(12)

else if G(s) = diag(s) +B:

minimize
L∑

l=1

log ul+Bll

bl+Bll

ul − bl
Bllxl(B)yl(B)sl

subject to
L∑

l=1

sl = Γ,

b ≤ s ≤ u,
variables: s.

(13)

end
Obtain the upper bound U0 = Vu(Ω0) by solving (5)
with Algorithm 1.

2) Stop Criterion
If Uk − Lk < ε, then stop;
else go to the next step.

3) Branching
Pick a rectangular set Ω̄ ∈ Qk that satisfies Vl(Ω̄) = Lk.
Split Ω̄ into ΩI and ΩII along one of its longest edges:
Qk+1 = (Qk − {Ω̄}) ∪ {ΩI,ΩII}.
Update Lk+1 = minΩ∈Qk+1

Vl(Ω) and Uk+1 =
minΩ∈Qk+1

Vu(Ω).

4) Pruning
Remove all Ω from Qk+1 where Vl(Ω) > Uk+1.
Set k ← k + 1. Go to Step 2.

Theorem 2: Starting from an initial rectangular Ω0, Algo-
rithm 2 converges to the global optimal solution of (5).

Proof: We get the lower bound of (5) by solving the re-
laxed linear program and get the upper bound by Algorithm 1
for all the three types ofG(s). Then, based on the upper bound
and lower bound, Algorithm 2 terminates with a certificate
proving that the suboptimal point found is ε-suboptimal [14].

Remark 2: Algorithm 1 runs as an inner loop of Algorithm
2 at Step 2 to provide the upper bound for (5). Lk includes the
child nodes across all the leaves in a binary tree. At the last
two steps of Algorithm 2, namely “branching” and “pruning”,
minimizing ρ(G(s)) over all the lower bound is searching for
a global lower bound on the optimal value of (5). When bl = 0
for some l, we let bl = ε to make Algorithm 1 run smoothly,
where ε is a small enough positive value to approximate ε → 0.
A practical stopping criterion for Algorithm 2 is Uk −Lk < ε
for a given small ε.

V. NUMERICAL EXPERIMENTS

In this section, we provide numerical experiments to il-
lustrate the performance of Algorithm 1 in Section III and
Algorithm 2 in Section IV.
Example 1: We first consider the case that G(s) =

diag(s)B, where B is a symmetric matrix given by:

B =

⎡
⎣0.620 0.310 0.124
0.310 0.620 0.310
0.124 0.310 0.620

⎤
⎦ .

We set Γ = 2.3 and [b, u] = [0, 1], where 0 and 1 are the all
zero and all one vectors, respectively. The first three iterations
for the binary tree of Algorithm 2 are shown in Figure 2.
Figure 3 (a) and (c) plot the evolutions of spectral radius that
run Algorithm 1 and Algorithm 2 respectively. The optimal
spectral radius is ρ� = 0.8318 and the optimal solution is
s� = (0.9622, 0.3756, 0.9622)�.

Fig. 2. We use a rectangular set [ε,1]3 with ε = 0.001. The lower bound and
upper bound are obtained corresponding to Step 1 of Algorithm 2. At the root
of the tree, we have L0 = 0.1403 and U0 = 0.8325. The rectangular set is
then partitioned into two sets: C and D (C is the set s1 ∈ [ε, (ε+1)/2], s2 ∈
[ε,1], s3 ∈ [ε,1] and D is the set s1 ∈ [(ε+1)/2, 1], s2 ∈ [ε,1], s3 ∈ [ε,1]).
We then have L1 = 0.3115 and U1 = 0.8325. In the third level of the
binary tree, we partition the set D to obtain the bottom children E and F
(E is the set s1 ∈ [(ε + 1)/2, 1], s2 ∈ [ε, (ε + 1)/2], s3 ∈ [ε, 1] and F is
the set s1 ∈ [(ε + 1)/2, 1], s2 ∈ [(ε + 1)/2, 1], s3 ∈ [ε, 1]). We then have
L2 = 0.4535 and U2 = 0.8324.
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Next, we consider the case that G(s) = diag(s)+B, where
B is a nonnegative matrix given by:

B =

⎡
⎣0.000 0.124 0.124
0.310 0.000 0.310
0.124 0.124 0.000

⎤
⎦ .

We set Γ = 1.5 and [b, u] = [0, 1]. Figure 3 (b) and
(d) plot the evolutions of the optimal value of (5) using
Algorithm 1 and Algorithm 2, respectively. The optimal
spectral radius is ρ� = 0.8441 and the optimal solution is
s� = (0.525, 0.450, 0.525)�.
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Fig. 3. Illustrations of convergence: (a) Algorithm 2 withG(s) = diag(s)B,
(b) Algorithm 2 with G(s) = diag(s) + B, (c) Algorithm 1 with G(s) =
diag(s)B, and (d) Algorithm 1 with G(s) = diag(s) +B.

Example 2: Using the Hong Kong SARS test case in [10],
we compare three kinds of epidemic control on the 18 districts
in Hong Kong for multi-group model with parameters: fii =
3, fij = 0.57 when districts i, j are neighbors and fij = 0.02
when districts i, j are not adjacent, Γ = 3.6667. The results in
these three controls are 1) homogeneous control allocates the
same resource to different districts yielding ρ = 1.1323, 2)
heterogeneous control obtained from [10] yields ρ = 1.0126,
and 3) we use Algorithm 2 with the parameter ε = 0.01 to
yield ρ = 1.0088.
The experiments demonstrate the value of taking advantage

of the topology of interactive networks by placing more
resources in more important districts. We also observe that
the upper bound obtained by Algorithm 1 yields a value close
to ρ = 1.0088 in the first few iterations of Algorithm 2, and
Algorithm 1 typically converges in less than 100 iterations.

VI. CONCLUSION
We study a deterministic epidemic evolution control frame-

work that requires solving a nonconvex optimization problem
by minimizing a spectral radius function subject to constraints
on the control variables. We first show that the optimal solution

of the spectral radius minimization problem resides on the
boundary of the constraint set. Then, feasible suboptimal
solutions of the spectral radius minimization problem are
obtained using successive convex approximation based on geo-
metric programming. Key tools in nonnegative matrix theory,
e.g., the Perron-Frobenius theorem and the Friedland-Karlin
inequalities, are then leveraged to find bounds that can be
tightened using the branch-and-boundmethod. This leads to an
algorithm that can compute the global optimal solution of the
spectral radius minimization problem. Numerical experiments
show that our algorithms can be computationally fast in small
to medium-sized networks.
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