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Abstract—Along with the exponentially increasing quantity of —optimization, when all users want their own rates to be ab hig
intelligent terminals connected to the Internet, the specum  as possible [1], [2]. However, when there are plenty of uaers
competition among users becomes more and more severeyq|| 55 the demanded rates are very high, not all users age abl

in wireless networks. The network have not the ability to to t it at their d ded rat imult V. dukdo t
satisfy all communication requirements due to the significatly ~ © ransmit at inéir demanaded rates simuitaneously, due€io

increasing users and demanded rates. Energy_aware admissi mult'user |nterferences |n hOStI|e I’adIO enV'rOnmentS-l[B]l
control has been proved to be an efficient way to tackle the Therefore, there exists an interesting issue: how to coesum
infeasibility caused by the severe spectrum competition aong  minimum energy but to support maximum intelligent termsnal
users. However, the traditional admission control is limied by which can transmit at their demanded rates simultaneously.

gradually removing chosen users, and pays less attention toE dmissi trol h b ded
the fairness. In this paper, we elaborate the concept of the nergy-aware aamission control has been regarded as a

fairness in a max-min optimization problem with respect to he Promising approach to guarantee the demands of admitted
transmission rates, by leveraging the model of bit error raes users [6]-[8], but pays little attention on the fairness amo
with @Q-function for general fading communications. Then, we ysers. It is important to study how to fairly admit users with
make use of the max-min rate fairness to smartly determine th joint optimization. In addition, the decentralized comtis

subset of users to be admitted in wireless networks. Meanwie, ded for | | irel ¢ K th rechli
the overall energy consumption is minimized and the network N€€d€d Tor large-scale wireless networks, as the cerdaliz

fairess is guaranteed. In particular, the algorithms can ackle approach may be costly and time consuming.

more than one user at each iteration. Numerical evaluationshow In this paper, the fairness is reflected by the optimal rate

the effectiveness of the algorithms. value of the end-to-end weighted max-min rate problem, in
Index Terms—Max-min rate fairness, power optimization, which the Weights represent the flexible artificial factonsl a

admission control, bit error rate, Q-function. the data rate function is based on the bit error rates (BER)

related with the Signal to Interference Noise Rat&iNR)
and the tabulated-function [9]-[11]. We design an iterative

i , i i __rate control algorithm, which converges geometricallyt,f&s

E are stepping into the era in which everythingin the optimal rate faimess by leveraging the nonlinea

IS conne_cl:tedh to the Intlernet, including not c,mIIYDerron-Frobenius theorem. Then, the optimal max-min rate
computers, mobile phones, but also cars, drones etc. \8&elg,;noqs can be applied as the eligibility criteria for the

applications often compete with each other to meet theyission to denser wireless networks. When the wireless
corresponding rate demands due to the scarce bandwi orks can satisfy the rate demands of all users, the

The faimess in competition has been noticed for poWgljness is underground and energy consumption becomes
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I. INTRODUCTION



centralized admission controller. which users stop transmission once their instantaneougmpow
In practice, it is unfair for the users with low rate demandsonsumptions exceed a certain threshold. Mitliagkas €68l.
The channel quality of the user with a poor channel conditiogemoved users based on convex relaxation to obtain an
is critical as the allocated transmission power is consé@i approximate solution for the feasibility of the networks.
by the other users [14]. Intuitively, those users with highlalldorsson et al. proposed algorithms based on a novelrline
rate demands would be better to choose other more efficipnbgramming formulation for admission control problem#wi
communication networks. Moreover, the value of fairness tonstant-factor performance guarantees in [6]. The asthor
also varying with the admission control of the users in véissl made use of Lagrange dual parameter to gradually remove
networks, e.g., the value of fairness will increase whenesorthe user who produced the highest interference in [7]. Zhao
unsatisfied users quit. Instead of admitting or rejecting ot al. jointly designed the transmission beamformers and
chosen user at each iteration, we deal with more users at epotver control for densely underlaid small cell access goint
iteration by making use of the lower and upper bounds of tle wireless backhaul in [8]. Meanwhile, there is room for
network fairness to classify the users into three categorie improvement of efficient admission control considering the
Overall, the contributions of the paper are as follows:  fairness among users.

1) Firstly, we analytically solve the minimal data rate Fairness amongst intelligent terminals has been analyzed a
maximization problem with power budgets, and propog¥ importantissue from several dimensions, e.g., enewyas
a distributed algorithm to obtain the optimal max-mir@chieving required quality of services, spectrum sharargi
rate fairness. so on [1]. Kelly et al. firstly analyzed the stability and fadéiss
2) Secondly, based on the established feasibility contitio for rate control algorithms in [15]. Tassiulas et al. progobs:
we propose a dynamic a|gorithm for the gracefJﬂir scheduling which assigned dynamic Weights to the flows
handling of infeasibility in wireless networks. In@s max-min fairness allocation of bandwidth in wirelesad-
particular, the algorithm optimizes the overall powepetworks in [16]. Rangwala et al. in [17] achieved a fair and
Consumption by adapting the rate demands to guaran@&Clent rate allocation in wireless sensor networks. ET&Z
the fairness. et al. in [18] fairly allocated resources for competing gser
3) Thirdly, we propose a fast iterative admission contrdh the time-varying channel conditions. Zheng et al. in [19]
algorithm to admit users by exploiting the fairnes§roposed a distributed approach with tuning fair paranseter
algorithm as a sub-module. generalize the diverse set of link rate functions and cairgs.
The rest of the paper is organized as follows: We discuss'" contrast to the commonly used two timescale approach
the relevant state-of-the-art literatures in Section Heff, we (1Nding & maximum user set first before minimizing the total

firstly formulate the max-min rate fairness problem for thEN€rgy consumption of all users in the set) in earlier works,
wireless networks with the data rate functions related wite ProPose a single timescale decentralized power control
SINR and Q-function in Section II. Secondly, we study the®90rithm with low complexity. We make use of the network
characteristics of this optimization problem at optimalénd fairness obtained from a max-min rate fairness optimiratio
propose a distributed power control algorithm to obtain tH¥©Plem, to adaptthe demanded rates of users when the system
optimal solution in Section IV. Moreover, in Section V, weS Infeasible. We develop a novel power allocation approach

study the feasibility of a total power minimization problemtNat can jointly capture the energy consumption and rate

and design a dynamic power control algorithm that adapts tfa/ness. Our approach accommodates a variety of extegsion

rate requirements to minimize the total energy consumptidAc!uding CDMA and Shannon capacity. Additionally, the
In Section VI, we propose the fast admission control styate§T0P0S€d approach is computationally fast and scalable in
by using the lower and upper bounds of the fairness. Théan’dec_entrahzed manner without pgrameter conf{guratlon. We
we numerically evaluate the performance of our algorithms £1assify the users into three strategies and deal with meeesu
Section VII. Finally, we conclude the work in Section Vlll.at_ each iteration. This is useful for practical wirelessnwaks
All the proofs of Lemmas and Theorems can be found in tH4th @ large number of users.
Appendix.

We adopt the following notations in this paper: Lowercase I1l. SYSTEM MODEL
and uppercase boldfaces are used for vectors and matriceggngiger a wireless network with source-destination pairs.
respectively. The super-scripy " denotes the transpose.|> |, the physical layer, a common spectrum bandwidth is shared
denotes thdngorm (Euclidean norm)ix andlogx denote 4yl the users in the network. The transmission power of the
(e*,...,e™) " and(logzy,...,logay,) ", respectively. transmitter of linkl is denoted by,. The receive&INR at the

receiver of linkl is given in terms of the transmission power
Il. RELATED WORKS p=(p1,...,pr)" as:

In the literatures, there has been extensive works on Gupi
admission control to deal with the feasibility issue. In,[3] SINR;(p) = S G o @)
Mahdavi-Doost et al. developed a centralized gradual ranov Z LiPj o
algorithm that removes users to increase the maximum i#l
achievable SINR in the system. In [4], Rasti et al. whereG,; is the channel gain from the transmitter of ligik

proposed a distributed temporarily removal algorithm, ito the receiver of link, ando; is the additive white Gaussian



noise (AWGN) at the receiver of link. The channel gain N et e [Reke

matrix G takes propagation loss, spreading loss and other Optimization (5)
transmission modulation factors into consideration. Nonlinear Perron- Standard Interference
As the channel fading significantly affects the performancgobenius Theorem 1 Approach Theorem 2

of wireless networks, we model the achievable data rate of

Adapting for Feasibility;

i : : Total Energy
ik £ by [20]. [21F Algorithm 1 Algorthin 3}y fivimization (10)
f(SINRu(p) = R (1-2Q (VSINR(D)) ), l Algorithm 2

whereR is the fixed data transmission rate, and ¢héunction [Pt f-limisilon, Cloniol willy
Users Classfication

of BER is defined as: Algorithm 4

o0
Q)= —= [ Pay, 3)
‘/ﬁ z Fig. 1. An overview of optimization problems and iteratiMgaithms.

In particular, our proposed algorithms in this paper ar® als
applied to the conventional rate functions, egJNR;(p) for
CDMA approximation andog(1 + SINR;(p)) for Shannon IV. DISTRIBUTED POWER CONTROL ALGORITHMS
capacity formula [19]. In general, it is very difficult to gy jntroducing an auxiliary variable, we rewrite (5) as:
analyze most of modulation schemes as the properties of
involved functions are nonconvex or would not translate int
the achievable rates. For the other modulation and codingiaximize 7

schemes, our proposed algorithms could still run but the R (1 — 20 ( SINR, (p)))
convergence may not be guaranteed. As the required prepertisubject to >7, 1=1,...,L,
of the involved may not hold, it would produce unpredictable A _ B
results, even has the possibility of divergence or instsbil P <P
In practice, there is typically a budget for the transmit pow p=>0,
allowed to each transmitter. We assume that the feasible sgf;iaples: r,p.
of powers can be represented by a linear constraint: (6)
Ap <p, (4) Intuitively, we could promote the communication rate by

. . _ increasing the transmit power until no further more. Theref
wherep is a N x 1 positive vector of constraint values ard we have the following result.

is a N x L nonnegative weight matrix. Note that every link Lemma 1: The optimal power solutiop* of (6) satisfies
involves at least one power constraint. Moreover, evenef th -+ thore is at least one lirksuch that(Ap*); = p.
transmit power of a link is physically unconstrained, weldou Proof: See Appendix A. -

simply augmentA and p with an arbitrarily large individual e max-min rate problem will achieve the fairness just as

power constraint on that link. Two possible scenarios idetl , osuit of “Bucket Theory”. Therefore, we have the follog/in
under (4) are that of individual power constraints on each li result

in an uplink network (withN = L and A = I), and that R(l _ 2Q( SlNRl(p*)))
of a single total power constraint on all links in a downlink [ emma 2:
network (with V. = 1 andA = 17). Linear power constraints
also appear in other _kmd_s of _ad—hoc Se“"_‘gs' €.9., mﬂn_&e Now we propose the following algorithm. Lét index the
temperature constraints in wireless cognitive radio rsgéti . .

! ) : -fteration number.

Since the various users could have different service : . y .
requirements, the network could assign different weightse Algorithm 1: Max-min Rate Fairness Control Algorithm.
users for the rate allocation. L6t denote the weight assigned 1) Initialize an arbitraryp(0)
to thel-th user. The weighted max-min rate fairness problem
is formulated as:

7 for all [ are equal.
Proof: See Appendix é ]

in feasible power budgets and
a small positive.
2) Update the transmit power for each link:

maximize min M p(k+1)= bi pi(k).
l B R (1 —2Q ( SINRl(p(k))))
subject to Ap < p, (5) (7
p=>0, 3) Normalization of power:

variables : p.

. V7
k+1)= —_ k+1). 8
Then, we derive the optimal fairness solution of (5) first, plk+1) <mjm (Ap(k + 1))j>pl( 1. @

a_nd connegt (5) 'Fo the total energy minimization p_ro.b_lermfor 4) Go to Step 2 until[p(k +1) — p(k)||2 < e.
given certain weigh3. Then, we address the feasibility issue
by adapting the rate demands and leveraging the admissiofheorem 1:p(k) in Algorithm 1 converges to an optimal
control. Figure 1 gives an overview of the developments asdlution of (6) from anyp(0) > 0. Moreover,p(k) converges
the related optimization problems in this paper. geometrically fast.




Proof: See Appendix C. B infeasibility is caused by high demanded ratedue to the
Remark 1:The power update (7) is distributednature budgep of the communication power. By leveraging
based on the current power and rate fboth user, as the results in the previous sections, the users have the comm
R (1 —20 ( SINRl(p(k)))) denotes the current rate.rate fairness, i.e., the optimal value of (5) regardlesshefrt
The normalization (8) can be made distributed usir@vn demanded rates. In order to distinguish from the
gossip algorithms [22]-[24]. The necessity of transmigtinPOWer p in (10), we introducez as the auxiliary variable
information at each iteration may slow down the convergendéhich denotes the virtual power corresponding to (5). In
Remark 2: The function (7) is concave when the valu®ther words, (10) must be feasible if we adapt the demanded
of SINR is less than two, that theoretically guarantees ti@tes to be the optimal value of (5) for all users, ie.,
convergence of Algorithm 1. It is interesting to note thas thR (1 —2Q (\/S|NR1(Z*))) where z* denotes the optimal
following second-order derivative is below a small postivpower solution of (5) obtained from Algorithm 1. Intuitiyel
thresholde and: the power can be further reduced if we keep the rate demands
. 5 B for the users whose demanded rates are less than the common
SlNR}l(Lr;—}oov R(1 —2Q( 5|NRl(p)))SINRl(p) rate fairness. Therefore, we propose the following adeptiv
SINR; (p) algorithm to support all users.

5.NRLI({,I§HOO eSINR; (p) Algorithm 3: Adaptive Energy Minimization Algorithm.

= 0 1) Initialize an arbitraryp(0), z(0) in feasible power

. . ) budgets and a small positive
which leads to the convergence of Algorithm 1 for the large 2) Update the virtual powex(k + 1):

value of SINR.
z(k)

V. TOTAL ENERGY CONSUMPTION R (1 —20 ( SINRl(z(k)))) ’
In this section, we consider the problem of minimizing (12)
the total energy consumption subject to given data rate3) Normalizationz(k + 1):
requirements and individual power budgets in the wireless

Zl(k-i-l): vi.

networks, which is formulated as follows: zi(k+1)= (min L) zi(k+1). (13)
I J Z](k -+ ].)
minimize Y p; 4) Update the transmit power of each user:
=1 ] min{ 7, R(1-2Q(\/SINR; (z(k))
subject to R (1-2Q (VSINR(D))) =71, 1=1,....L pi(k +1) = min { {R(1<2Q< EINRL(p(k))))))}
D1 Sﬁl; l:157L Xpl(k?),ﬁl}.
p=>0, (14)

variables : p, 5) Go to Step 2 untiljp(k + 1) — p(k)||2 <.

(10)  corollary 1: Starting from any initial poink(0) andp(0),
wherep; is the budget of the transmit power for théh user (%) in Algorithm 3 converges geometrically fast to the
andr; > 0 is the rate demand of theth user. In general, (10) optimal solution of (10), by replacing the righthand side of
may or may not be feasible. This means that it may not ge rate constraints in (10) within {7, f;(SINR;(z*)} where
possible to have the data transmission rates of all the wserg,* is the optimal solution of (5) toward the network fairness,

be larger tharr in (10). i.e., the convergence af(k).
We first address (10) by leveraging the standard interferenc  prgof: See Appendix E. n

function framework introduced in [13], [25] when (10) is
feasible. We propose a distributed fixed-point algorithm to V1. FAST ADMISSION CONTROL WITH USERS
compute the optimal solution of (10). CLASSIEICATION

Algorithm 2: Total Energy Minimization Algorithm. In this section, we focus on the admission control based
on the optimal solution of (5) for different user sets. Firgli
the optimal set of users whose rate demands can be all
pl(k),ﬁl} - satisfied is a NP-hard combinatorial problem [4]. When the
(p(k)))) number of users is large, it is not practical to examine al th
(11) combinations of the users to choose a feasible set with the
Theorem 2:Starting from any initial point p(0), Minimum energy consumption. The state-of-art techniqoes f

Algorithm 2 converges geometrically fast to an optimadmission control [3], [4] use the heuristic greedy strateg
solution of (10) when (10) is feasible. reject one user at each time. In the following, we propose a

Proof: See Appendix D. m faster admission control procedure to admit and reject more
However, when (10) is infeasible, the power control has tsers at each time while the rest part of algorithms follows
tackle the infeasibility issue. It is interesting to notettthe the geometrical convergence.

Tl

R (1 o) ( SINR;

pi(k+ 1) = min {




Theorem 3:The optimal value of (5), i.e., the network « Go to (18) until||z(k + 1) — z(k)|2 < .
fairness, increases when any of users in the networks are  « Reject the users for alt
rejected.

Proof: See Appendix F. [ | _
R|1-2 SINR; (z(k
From Algorithm 3, we have made use of the fairness among afgm ~ e ( @ ( 32 )))) ’

all the users in the networks. Intuitively, the users whase r _ (20)
demands are below this fairness should be admitted into the whose rate requirements are beyond the upper
communication networks. Actually, we can further deduee th bound of the network fairness, i.e., the right part

upper bound of the fairness by Algorithm 1 for all the adnditte in (20).
users. It is interesting to note that the users are clasdiffed 4) Find the Feasible Set:
the lower and upper bounds of the network fairness into three . Go to Step 2 to update the new lower bound (see

categories: 1pdmitted useravhose rate demands are below Figure 2) after resetting the auxiliary variablefor
the Iowe_r bound of the network falrness regardmg to both the rest of users, i.e., the adaptive users, until there
the admitted users and the adaptive usersadjptive users are no any more rejected users.

whose rate demands may need to be adapted to the lower ) o
bound of the network faimess, andr8jected usersvhose rate ~ 2) Adaptive Energy Minimization:
demands are beyond the upper bound of the network fairness  « Update the transmit power of each admitted user

regarding to only the admitted users. Therefore, the falgw and adaptive user:
fast admission control algorithm admits or rejects morasise
at each time. p(k+1) =
Algorithm 4: Fast Admission Control Algorithm. . 7 i
min .
1) Initialization: I (1 20 ( 5|NRl(p(k))))pl( )b
« Initialize an arbitraryp(0) and z(0) in feasible (21)
power budgets, a small positive and the set of o Repeat until|p(k + 1) — p(k)||2 <e.
supported usersi(0) = 0. . Update the transmit power of the adaptive users
2) Compute the lower bound of the network fairness whose rate requirements are not satisfied:
considering all users (except the rejected users):
« Update the virtual powez(k + 1): p(k+1) =
i) (k) - _ [min {m, R (1 —2Q ( SINRl(z(k))))}
R (1 . 2@( SINRl(z(k;)))) R (1 —20 ( SINRl(p(k))))
(15) _
« Normalizationz(k + 1): xpu(k), pi}- 22)

o Repeat until|p(k + 1) — p(k)||2 <e.

z(k+1) = <mjin %) zi(k+1). (16)

Corollary 2: Starting from any initial poink(0) andp(0),

o Go to (15) until|jz(k + 1) — z(k)||2 < e. p(k) in Algorithm 4 converges geometrically fast to the
o Admit the users intaA(t): optimal solution of (10) with the admitted users and the
adaptive users.
argr < mjinR <1 -2Q < SINRj(Z(k))>) ; Proof: See Appendix G. n

(17) Remark 3:The power updates (21), (22) are distributed
for all I, whose rate requirements are below theased on the current power and rate for th# user. The

lower bound of the network fairness, i.e., the righvirtual power updates (15), (18), normalization (16), (a8
part in (17). classifications (17), (20) can be made distributed usingigos

3) Compute the upper bound of the network faimess algorithms [22]—{[24].
considering only admitted users: Remark 4:When the total power minimization problem

« Set the virtual powet; (k) = 0, VI ¢A(t): in (10) is infeasible, the outpu_t from Algorithm 4 satisfi@qat
« Update the virtual powez(k + 1): power budgets, and whether it satisfies the rate constraghts
in (10) depends on the result of feasible set obtained by &tep
z1(k) v in Algorithm 4. When all the adaptive users’ rate requiretaen
R (1 _ 2Q( SINRl(z(k))))7 " are satisfied, the output from Algorithm 4 satisfies both the
(18) power budgets and the rate constraints. In contrary, iEthee
any adaptive users which need to adjust their rate requirtesme
to the lower bound of the network fairness, the output from
a(k+1) = (min Dj ) 2k +1). (19) AIgorith_m 4 only satisfie_s the power _budgets. The example is
i zj(k+1) shown in the next experimental section.

zi(k+1) =

« Normalizationz(k + 1):
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Fig. 2. An illustration of Algorithm 4 for fast admission doal when (10) is infeasible. The green and red circles detio¢ admitted and rejected users,
respectively. The yellow circle denotes the adaptive udevse rate requirement may need to be adapted.
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Fig. 3. lllustrations of the convergence of Algorithm 1 wiehe red line (i.e., Fairness) is the obtained optimal valug). The convergence is shown for
the small and large values 8INR in (a) and (b), respectively.

VII. NUMERICAL EXAMPLES the individual power constraints for the convenience of the

In this section, we evaluate the performance of the propos%%ﬂpanson'
algorithms numerically. The fixed c ommunication rate issset 10 €valuate the convergence of Algorithms 1 for the large
R =1 Mbps. The AWGN at the receiver, i.e;, is assumed SINR, we demonstrate the evolution of Algorithms 1 in
to be 5 x 1073 W. The channel gain is adopted from thderms of SINR instead of the rate. Figure 3 (a) verifies the
well-known modelG j, = kd]fkél [26], whered; is the distance geometrical convergence of Algorithm 1 for the small value
between thej-th transmitter and its receiver, ard= 0.09 is of SINR. It can be seen that Algorithm 1 can still converge
the attenuation factor that represents power variatiomstdu 0 the optimal value named as the fairness for the large value
path loss. The budgets of the transmit power for all users &eSINR in Figure 3 (b). Compared to the smalINR which
the same, i.ejp, =2 W for all [. is below than two, the speed of convergence is a little slower
Example 1:We first show the convergence of Algorithm 1for the largeSINR. Note that we can get the corresponding
through four users in a single-cell environment. Withouslo individual rate based on givesiNR from (2), and the network
of generality, we set the weight of all the users as the Sar,l,%,always feasible for the max-min rate fairness problem (5)
i.e.,,p1 =---=fr = 1. Moreover, we usA = I to consider =~ Example 2:Secondly, we show the convergence of
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Fig. 4. lllustrations of the convergence of Algorithm 2 feakible (10) in terms of transmit power in (a) and individtatk in (b), respectively. Each green
dashed line represents the corresponding demanded tsmiemrate for each user in (b).

InfeaS|bIe Algorlthm 2

InfeaS|bIe Alorlthm 2

2 L
>>>->->>->>->->>->b->>-
08 A0 00900000 00 000
§1.5- 0.7 R 0 0 -
2 | 7900 L S oo et
=2 a v - e
I s
= 1F Q 05+t
= g User 2
% 0.4 —4— User 3
= —¥— User 4
05 037} Fairness
0.2 1
0 * * * 0.1 * t t
0 5 10 15 0 5 10 15
Iteration Iteration
(@) (b)

Fig. 5. lllustrations of the convergence of Algorithm 2 fofeasible (10) in terms of transmit power in (a) and indidtuate in (b), respectively. Each
green dashed line represents the corresponding demaratesinission rate for each user in (b).

Algorithm 2 through four users in the same environmemtlgorithm 1) can achieve its rate requirement. In contrérg,
as Example 1. The required rate vector i = users (e.g., Users 2 and 4 whose rate requirements are beyond
[0.356,0.25,0.236,0.03], which leads to the feasible (10).the fairness obtained by Algorithm 1) cannot achieve tredi r
Figure 4 verifies that Algorithm 2 geometrically converges trequirements. However, User 1 achieves its rate requiremen
the optimal solution of (10) when the network is feasible. because User 3 transmits only on its rate demands instead of
Note that the total energy minimization problem (10)he fairness of the network.
may be infeasible, e.g., the required rate vectorris= Example 3:1t is possible to obtain different feasible sets
[0.668,0.844,0.345,0.78]. Algorithm 2 turns into a greedy from different algorithms, and it is interesting to obtahret
algorithm that converges to a point, where Users 2 andmdaximum feasible set which may also not be unique. Let
transmit at their maximum power level but still do not acleievthe required rate vector be = [0.668,0.186,0.736, 1.28]
their rate requirements as shown in Figure 5. Algorithm 2 alsvhich leads to the infeasible (10). Then, we can support all
converges when (10) is infeasible, but to an unpredictalilee users by adapting some users’ rate demands t&° be
solution where not all of the users can satisfy their ra{6.628,0.186,0.628,0.628]. Figure 6 shows that Algorithm 3
requirements. It is observed that the users (e.g., Userc@verges to the solution of (10), where User 2 reaches its
whose rate requirement is below the fairness obtained bgrresponding rate requirement which is below the fairness
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Fig. 6. An illustration of the convergence of Algorithm 3 fadaptive power
allocation in terms of individual rate when (10) is infedsibrhe red line (i.e.,
Fairness) is the optimal value obtained by Algorithm 1. Egoben dashed
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Fig. 7. An illustration of the convergence of Algorithm 4 fiast admission
control in terms of individual rate when (10) is infeasibléhe red solid line
(i.e., Upper bound) is the optimal value obtained by Aldorit1 for the
network fairness with only the admitted Users 2 and 3. Thed&shed line
(i.e., Lower bound) is changed from the optimal value ofgdihy Algorithm 1
with all users to the optimal value obtained by Algorithm thwthe admitted
Users 2 and 3, and the adaptive User 1. Each green dasheckfiresents
the corresponding demanded transmission rate for each user

and Users 1, 3 and 4 communicate on the adaptive(régs

Mbps as they are above the fairness obtained by Algorithm
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Fig. 8. Average outage probability and average total povegrsemption
versus total number of users based on the Monte-Carlo siionga

infeasible (10), and the channel gain is given as:

0.3183 0.1744 0.1500 0.1480

0.1905 0.6659 0.1618 0.1859
G= . (23)
0.1805 0.1577 0.4098 0.1240

0.1887 0.1029 0.1490 0.4008

Figure 7 shows the convergence of Algorithm 4. Users 2 and
3 are admitted because their rate demands are below the lower
bound of the fairness 0.754 obtained by Algorithm 1 for Users
1, 2, and 3. User 4 is rejected because its rate demand is large
than the upper bound of the fairness 0.93 obtained Algorithm
for Users 2, and 3. User 1 is the adaptive user because its rate
demand is between the lower and upper bounds of the fairness,
thus its rate demand may be satisfied as Users 2 and 3 only
achieve their rate demands instead of the lower bound of the
fairness. Otherwise, the adaptive users should adaptrétes
to the final lower bound of the network fairness.

Example 5:Compared to other approaches for larger
wireless networks, this example reports the Monte-Carl@M
average results for 30 MC runs. For each MC run, transmitter
locations are randomly drawn on a 2Km 2Km square.

For each transmitter location, a receiver location is drawn
uniformly in a disc of radius 400 meters, excluding a raditis o
10 meters. The rate demands of all users follow the uniform
distribution on[0.1, 0.9]Mbps.

In Figure 8, Alg. 4 is our proposed Algorithm 4 in
Section V, Alg. [3] is the centralized removal algorithm Bi,[

Alg. [7] is the distributed removal algorithm in [7] and Alfh]

is the heuristic removal algorithm in [5]. Figure 8 showsttha
Igorithm 4 outperforms all the other approaches in terms of
énied ratio at the cost of more power consumption. Because

Example 4:It is interesting to note that the users’ ratehe global network interferences become higher due to ttte fa
requirements which are above the lower bound of the netwdtiat our algorithm supports many adaptive users besidé®eof t
fairness may also be satisfied as shown in Figure 5 (ladmitted users. Figure 9 demonstrates one example foy thirt
Intuitively, we use the admission control to reject the sseclassified users, i.e., admitted, adaptive, and rejectedsus

whose rate demands are beyond the upper bound of

fRegardless of the delay from the transmitting information,

network fairness as shown in Figure 2. Let the required rafdgorithm 4 only needs a few milliseconds within average

vector ber = [0.85,0.54,0.32,1.62] which leads to the

fifty iterations in total. Note that Algorithm 4 is a double



because it is known about the first derivative @ffunction

1600

V( D rejected transmitter that: 1 2/2
1400 X rejected receiver b — ____p *
> a(;apttive transmitter VQ(x) - \/ﬁe . (25)
1200 D_’_ (O adaptive receiver 4
ted t itt A~ .
R S eesramee) |t follows fi(SINR(p*)) > fi(SINRi(p*) for all 1, which

Let 7* be the optimal value of (6). Suppose not at optimality
and the linkl is with the largest weighted link rate, i.e.:

400

200

| \ f : R (1-2Q (VSINR(p))) . o5

200 A B

0 200 400 600 800 1000 1200 1400 1600 1800 Recall thatG;; > 0 for all [ and j. It is easy to verify that

the SINR,(p) is a strictly increasing function ip;, and is a

Fig. 9. An illustration of thirty classified users (sourcestnation pairs). Strictly decreasing function ip; for all j # [. It is possible to

Red, blue and purple lines denote the rejected, admittedadagtive users, decreasg; by a sufficiently small amourt> 0 such that (26)
respectively. The width of line denotes the correspondatg requirement. is still satisfied by using the new transmit power for link.e

R (1 pYe) (,/S|NRj(p)))
layer circulation. While the inner circulation geomettiga P! ~ P

Bj
converges to the lower and upper bounds of the fairness, theluding other links can mcrease Thus, we can further
outer circulation of classification is only in single digfisr increase the value of* which is a contradiction to the
even one hundred users. In practice, the adaptive users hasgumption of the optimality.
rights to decide whether to change channel for higher gqualit
of service or to undertake the reduced rate for the falrnessc_ Proof of Theorem 1

>\ A contradicts the optimality op*.
800 - 4
600 & ] B. Proof of Lemma 2
/I

e. By doing so, m1n

VIII. CONCLUSION From Lemma 2, we have thdt*,p*) must necessarily

satisfy the following condition:
In this paper, we studied the novel data rate function fy 9

based on the Signal to Interference Noise RaStNR) and R (1 _ QQ( SlNRl(p*)))

Q-function directly (i.e.,Q(v/SINR)), since the information 7 = , 1l=1,...,L. (27)
about BER is essential critical to improve the correctness a B

performance of wireless networks. In order to guarantee t@@mbining with Lemma 1, we cast (6) into the following
fairness for all users, we analyzed the optimal charatiesis eigenvalue problem:

of the max-min rate fairness problem, and proposed a 1 8

decentralized rate control algorithm. Then, we made use of —*pl* = Py

the lower and upper bounds of the network fairness to address T R (1 -2Q ( SINR; (P*))) (28)
the feasibility issue of a total power minimization problem Ap* < p,

with rate constraints. We proposed a dynamic algorithm that

adapted their rate demands to minimize the total power @&nd 7* is maximal. Note that (28) is necessary but not
a heterogeneous wireless network. Furthermore, we ckgsifpufficient for optimality unless the resulting* is maximal.

the users into three categories, iadmitted usersadaptive However, we can show that there is a unique solution
usersand rejected usersso as to deal with more than one© (28) under given condition so that this necessary caoiti
user at each time. Numerical evaluations demonstratedthat is also sufficient based on the nonlinear Perron-Frobenius

proposed algorithms exhibited faster convergence behavio theorem [27], [28]:
Let || - || be a monotone vector notnon R: andS = {x €

APPENDIX RL, : [|x]| = 1}. Letf : RZ, — R%, be a concave m&mwith
f(x) > 0 for x 2 0%. Thenf has a unique eigenvectar € S.
Furthermore,x* is the unique fixed Foint of the normalized
. ) mapu : S — S defined byu(x) = )
p*. Clearly, p* is a feasible £

. (Ap*) ) of u converge geometrically fast to* from any initial point
power allocation ang* > p*. Moreover, since&SINR(ap*) x(0) 0.

is strictly increasing in terms af, we have thabINR;(p*) >

A. Proof of Lemma 1

Let p* be an optimal solution to (6). Suppogep* < p.
5 and all the orbits

Now, let p* = (mlin

SINR;(p*) for all I. For the rate function (2), we have: 1The vector norn| - || is monotone meangx|| > |ly| if x >y > 0.
2A mappingf : RL  — RL is concave iff (ax + (1 —a)y) > af (x) +
9fi(SINRi(p)) _ R e SINRI(P)/2 5 0 (24) (1—a)f(y) for all %Og o ng.

dSINR;(p)  /27SINR;(p) 3x > yimpliesz; >y, for 1 <1< L andx # y.
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Fig: lq. The iIIustrati_on of the corresp(_)nding first-orded esecond-order
derivative for the function of;(SINR;(p)) in terms of SINR;(p). Fig. 11. The upper bound on ti@-function (3) as given by (37).
We next show that: it is still below a certain small positive value is concave
®) By as SINR;(p) is concave andy(SINR;(p)) is concave and
w\p) = D nondecreasing.
R(l —QQ( SlNRl(P))) Since g(SINR;(p)) is concave, it follows thatu(p) is
B,SINR; (p) concave. Hence, we use the normalized fixed-point iteration
= Y Gupj+oi|, tocomputep*:
R (1-20 (VaNR(p))) \ 57 alp(®)
(29) p(k+1)= Talo(ENIA =2 (34)
is concave on the positive domain, which implies that (28) [u(p(¥).p

has a unique solution which can be found using a fixed-poiwhich converges geometrically fast to° for any p(0) > 0.
iteration (c.f. Lemma 5 in [29]). To show thajf(p) is concave, This iteration can be rewritten as Steps 2 and 3 of Algorithm 1
we need the result from (c.f. Lemma 4 in [29] based on [30]Note that Step 3 always gives a feasible power allocation.
followed from the fact that the perspective and the affine

composition of a function preserves the concavity of th®. Proof of Theorem 2

function. Letting: The burden of proof lies in the standard interference

B function framework of [13]. Thus, we first introduce it begor
SINR = SINR . (30 . L -
9(SINR(p)) R(1 - 2Q(\/SINRi(p))) !(p). (30) showing how it is applied.
o Definition 1: An interference functiod(p) is standard if,
Since: for all p > 0, the following properties are satisfied
B 1-20(a) — /e 2 Gy Monotonicity: If p; > ps, thenI(py) > I(p2).
Vyla) = B (1-2Q(/7))? '  Scalability: For allae > 1, oI(p) > I(ap).
and: Lemma 3:If p is a feasible power vector, thdifp) is a
' monotone increasing sequence of feasible power vector in a
VQQ(@«) Ble—w/Q } %(1 —2Q(Vx)) + %671/2 fi)iet?]—;)toggﬁgggc.ion that converges to the unique fixed poin
=75 ) P .
R _ 34/ * *
for x > 0, therefore: Lemma 4:Let D C R¥ andf : D — R be such that for all
xeD,£L 1 =1,...,LexistonD. Thenf is monotonically
2 Bi —SINR;(p)/2 D Bajz ! Lexi D. Thenfi icall
V79(2) lo=sinr,(p)= R X increasing onD if and only if g—é >0,1=1,...,L.
5|NRl2(p)—3(1 —2Q(/SINR(p))) + 25|N$L(P)675INRl(p)/2 Lemma 5:Let: )
(1 — 2Q(\/SINR(p)))3+/27SINR;(p) ' Ii(p) = pi- (36)
v v (33) R (1 ~2Q ( SINRl(p)))

It can be seen that (30) is concave when the value

of SINR; (p) is below the threshold of near two. and “Notice that, even thouglp > 0 was required in [13], the results hold
’ ually for justp > 0. Moreover, notice that positivity (i.eL(p) > 0) was

d ing which is shown in Fi 10. E houg
nonaecreasing whnic ] IS _S own |n_ Igurg . Bven t Oug&uired explicitly in [13], but can actually be implied byonmotonicity and
the second-order derivative value is positive for laBJ®R, scalability since the latter two yieldI(p) > I(ap) > I(p), for a > 1.



The interference functioffi(p) is standard [13].
This means thal(p) satisfies the three properties of the
standard interference function:

The authors would
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Q-function (3) is known to b&)(x) < 0.5 for z > 0, we
haveI;(p) is positive.

o Scalability: We scale each user’'s power &dy> 1. Then,
we haveSINR;(ap) > SINR;(p). Using the chain rule of
differentiation, we haveé f;(SINR;(p))/9SINR;(p) > 0.
Thus, we have;(SINR;(ap)) > fi(SINR;(p)). Then, we
get;(ap) < al;(p) because of the positivity.

o Monotonicity: From Lemma 4, if we can verify that [2]
%}Ef’) > 0 for all 5, then the monotonicity off;(p)
is gJuaranteed. Furthermore, the monotonicityIla$) is
guaranteed.

— If j =1, we havedl;(p)/0p; > 0 which is always
satisfied by being equivalent to:

(1]

(3]
(4

SINR/" (p™) [5]

2,/27SINR]" (p™)

as shown in Figure 11.
— If j # 1, similarly, we havedl;"(p™)/dp* > 0.
Furthermore, the functiod(p) min{I(p),p} is still (7]
standard [13]. Therefore, the convergence of Algorithm 2 is
guaranteed. (8]

< ¢~ SINRI" (P™)/2

Q(V/SINR(p))
1
2

37)
[6]

E. Proof of Corollary 1 ]
Theorem 1 proves the convergencezg¢k) in Steps 1 and
2 of Algorithm 3. Theorem 2 proves the convergence (f)

in Step 3 of Algorithm 3. [10]

[11]
F. Proof of Theorem 3

From (1) and (24), it is easy to verify that tlieh users’
rate function (2) is a strictly increasing function jp, and is
a strictly decreasing function ip; for j # . We can reduce [13]
the powerp; to be zero, which is regarded as being rejected
from the networks. By doing so, all the other users’ ratgg
are increased while theth user’s rate reduces to be zero. In
other words, the interference in the networks is reducedhwhe
the users are rejected. In particular, the rejected usetls wi s
zero rates are not taken into consideration when we obtain
the optimal value of (5), i.e., the network fairness. Thixg t
fairness obtained from Algorithm 1 will be larger after thélﬁ]
users are rejected.

[12]

(17]

G. Proof of Corollary 2

Theorem 1 proves the convergencezgk) in Step 2 and 18]
3 of Algorithm 4. Theorem 2 and Corollary 1 prove the
convergence of Algorithm 2 in Step 5 of Algorithm 4. Thel9l
convergence of Step 4 is guaranteed by the limited number of
users and Theorem 3.

grateful to Prof. Chee Wei Tan for helpful discussions.
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