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Abstract—Along with the exponentially increasing quantity of
intelligent terminals connected to the Internet, the spectrum
competition among users becomes more and more severe
in wireless networks. The network have not the ability to
satisfy all communication requirements due to the significantly
increasing users and demanded rates. Energy-aware admission
control has been proved to be an efficient way to tackle the
infeasibility caused by the severe spectrum competition among
users. However, the traditional admission control is limited by
gradually removing chosen users, and pays less attention to
the fairness. In this paper, we elaborate the concept of the
fairness in a max-min optimization problem with respect to the
transmission rates, by leveraging the model of bit error rates
with Q-function for general fading communications. Then, we
make use of the max-min rate fairness to smartly determine the
subset of users to be admitted in wireless networks. Meanwhile,
the overall energy consumption is minimized and the network
fairness is guaranteed. In particular, the algorithms can tackle
more than one user at each iteration. Numerical evaluationsshow
the effectiveness of the algorithms.

Index Terms—Max-min rate fairness, power optimization,
admission control, bit error rate, Q-function.

I. I NTRODUCTION

W E are stepping into the era in which everything
is connected to the Internet, including not only

computers, mobile phones, but also cars, drones etc. Wireless
applications often compete with each other to meet the
corresponding rate demands due to the scarce bandwidth.
The fairness in competition has been noticed for power
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optimization, when all users want their own rates to be as high
as possible [1], [2]. However, when there are plenty of usersas
well as the demanded rates are very high, not all users are able
to transmit at their demanded rates simultaneously, due to the
multiuser interferences in hostile radio environments [3]–[5].
Therefore, there exists an interesting issue: how to consume
minimum energy but to support maximum intelligent terminals
which can transmit at their demanded rates simultaneously.
Energy-aware admission control has been regarded as a
promising approach to guarantee the demands of admitted
users [6]–[8], but pays little attention on the fairness among
users. It is important to study how to fairly admit users with
joint optimization. In addition, the decentralized control is
needed for large-scale wireless networks, as the centralized
approach may be costly and time consuming.

In this paper, the fairness is reflected by the optimal rate
value of the end-to-end weighted max-min rate problem, in
which the weights represent the flexible artificial factors and
the data rate function is based on the bit error rates (BER)
related with the Signal to Interference Noise Ratio (SINR)
and the tabulatedQ-function [9]–[11]. We design an iterative
rate control algorithm, which converges geometrically fast, to
obtain the optimal rate fairness by leveraging the nonlinear
Perron-Frobenius theorem. Then, the optimal max-min rate
fairness can be applied as the eligibility criteria for the
admission to denser wireless networks. When the wireless
networks can satisfy the rate demands of all users, the
fairness is underground and energy consumption becomes
increasingly important due to the power budgets of intelligent
terminals [12]. We tackle the total power minimization
problem by using a distributed algorithm to achieve the
optimal power allocation whenever the problem is feasible.

When the wireless networks cannot fulfill the rate demands
for all users, the primary algorithm may not converge or
may be unstable in general. Admission control is frequently
used to deal with this infeasibility issue in the past. The
traditional admission approaches greedily reject the chosen
users one by one until the rest of users could achieve their rate
demands. Aggressive admission control unduly removes users,
leading to the under-utilized network, albeit with a lower total
energy consumption. We propose fast decentralized algorithm
based on the standard interference function framework [13], to
optimize the energy consumption and tackle the infeasibility
by adapting the rate demands beyond the fairness. This leads
to a decentralized dynamic approach without the need of a
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centralized admission controller.
In practice, it is unfair for the users with low rate demands.

The channel quality of the user with a poor channel condition
is critical as the allocated transmission power is constrained
by the other users [14]. Intuitively, those users with high
rate demands would be better to choose other more efficient
communication networks. Moreover, the value of fairness is
also varying with the admission control of the users in wireless
networks, e.g., the value of fairness will increase when some
unsatisfied users quit. Instead of admitting or rejecting one
chosen user at each iteration, we deal with more users at each
iteration by making use of the lower and upper bounds of the
network fairness to classify the users into three categories.

Overall, the contributions of the paper are as follows:

1) Firstly, we analytically solve the minimal data rate
maximization problem with power budgets, and propose
a distributed algorithm to obtain the optimal max-min
rate fairness.

2) Secondly, based on the established feasibility conditions,
we propose a dynamic algorithm for the graceful
handling of infeasibility in wireless networks. In
particular, the algorithm optimizes the overall power
consumption by adapting the rate demands to guarantee
the fairness.

3) Thirdly, we propose a fast iterative admission control
algorithm to admit users by exploiting the fairness
algorithm as a sub-module.

The rest of the paper is organized as follows: We discuss
the relevant state-of-the-art literatures in Section II. Then, we
firstly formulate the max-min rate fairness problem for the
wireless networks with the data rate functions related with
SINR andQ-function in Section III. Secondly, we study the
characteristics of this optimization problem at optimality, and
propose a distributed power control algorithm to obtain the
optimal solution in Section IV. Moreover, in Section V, we
study the feasibility of a total power minimization problem,
and design a dynamic power control algorithm that adapts the
rate requirements to minimize the total energy consumption.
In Section VI, we propose the fast admission control strategy
by using the lower and upper bounds of the fairness. Then,
we numerically evaluate the performance of our algorithms in
Section VII. Finally, we conclude the work in Section VIII.
All the proofs of Lemmas and Theorems can be found in the
Appendix.

We adopt the following notations in this paper: Lowercase
and uppercase boldfaces are used for vectors and matrices,
respectively. The super-script(·)⊤ denotes the transpose.‖·‖2
denotes theℓ2 norm (Euclidean norm).ex and logx denote
(ex1 , . . . , exn)⊤ and (log x1, . . . , log xn)

⊤, respectively.

II. RELATED WORKS

In the literatures, there has been extensive works on
admission control to deal with the feasibility issue. In [3],
Mahdavi-Doost et al. developed a centralized gradual removal
algorithm that removes users to increase the maximum
achievable SINR in the system. In [4], Rasti et al.
proposed a distributed temporarily removal algorithm, in

which users stop transmission once their instantaneous power
consumptions exceed a certain threshold. Mitliagkas et al.[5]
removed users based on convex relaxation to obtain an
approximate solution for the feasibility of the networks.
Halldorsson et al. proposed algorithms based on a novel linear
programming formulation for admission control problems with
constant-factor performance guarantees in [6]. The authors
made use of Lagrange dual parameter to gradually remove
the user who produced the highest interference in [7]. Zhao
et al. jointly designed the transmission beamformers and
power control for densely underlaid small cell access points
in wireless backhaul in [8]. Meanwhile, there is room for
improvement of efficient admission control considering the
fairness among users.

Fairness amongst intelligent terminals has been analyzed as
an important issue from several dimensions, e.g., energy usage,
achieving required quality of services, spectrum sharing,and
so on [1]. Kelly et al. firstly analyzed the stability and fairness
for rate control algorithms in [15]. Tassiulas et al. proposed a
fair scheduling which assigned dynamic weights to the flows
as max-min fairness allocation of bandwidth in wireless ad-hoc
networks in [16]. Rangwala et al. in [17] achieved a fair and
efficient rate allocation in wireless sensor networks. Eryilmaz
et al. in [18] fairly allocated resources for competing users
in the time-varying channel conditions. Zheng et al. in [19]
proposed a distributed approach with tuning fair parameters to
generalize the diverse set of link rate functions and constraints.

In contrast to the commonly used two timescale approach
(finding a maximum user set first before minimizing the total
energy consumption of all users in the set) in earlier works,
we propose a single timescale decentralized power control
algorithm with low complexity. We make use of the network
fairness obtained from a max-min rate fairness optimization
problem, to adapt the demanded rates of users when the system
is infeasible. We develop a novel power allocation approach
that can jointly capture the energy consumption and rate
fairness. Our approach accommodates a variety of extensions,
including CDMA and Shannon capacity. Additionally, the
proposed approach is computationally fast and scalable in
a decentralized manner without parameter configuration. We
classify the users into three strategies and deal with more users
at each iteration. This is useful for practical wireless networks
with a large number of users.

III. SYSTEM MODEL

Consider a wireless network withL source-destination pairs.
In the physical layer, a common spectrum bandwidth is shared
by all the users in the network. The transmission power of the
transmitter of linkl is denoted bypl. The receivedSINR at the
receiver of linkl is given in terms of the transmission power
p = (p1, . . . , pL)

⊤ as:

SINRl(p) =
Gllpl

∑

j 6=l

Gljpj + σl

, (1)

whereGlj is the channel gain from the transmitter of linkj
to the receiver of linkl, andσl is the additive white Gaussian
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noise (AWGN) at the receiver of linkl. The channel gain
matrix G takes propagation loss, spreading loss and other
transmission modulation factors into consideration.

As the channel fading significantly affects the performance
of wireless networks, we model the achievable data rate of
link l by [20], [21]:

fl(SINRl(p)) = R
(

1− 2Q
(

√

SINRl(p)
))

, (2)

whereR is the fixed data transmission rate, and theQ-function
of BER is defined as:

Q(x) =
1√
2π

∫ ∞

x

e−y2/2dy. (3)

In particular, our proposed algorithms in this paper are also
applied to the conventional rate functions, e.g.,SINRl(p) for
CDMA approximation andlog(1 + SINRl(p)) for Shannon
capacity formula [19]. In general, it is very difficult to
analyze most of modulation schemes as the properties of
involved functions are nonconvex or would not translate into
the achievable rates. For the other modulation and coding
schemes, our proposed algorithms could still run but the
convergence may not be guaranteed. As the required properties
of the involved may not hold, it would produce unpredictable
results, even has the possibility of divergence or instability.

In practice, there is typically a budget for the transmit power
allowed to each transmitter. We assume that the feasible set
of powers can be represented by a linear constraint:

Ap ≤ p̄, (4)

wherep̄ is aN ×1 positive vector of constraint values andA
is a N × L nonnegative weight matrix. Note that every link
involves at least one power constraint. Moreover, even if the
transmit power of a link is physically unconstrained, we could
simply augmentA and p̄ with an arbitrarily large individual
power constraint on that link. Two possible scenarios included
under (4) are that of individual power constraints on each link
in an uplink network (withN = L and A = I), and that
of a single total power constraint on all links in a downlink
network (withN = 1 andA = 1⊤). Linear power constraints
also appear in other kinds of ad-hoc settings, e.g., interference
temperature constraints in wireless cognitive radio settings.

Since the various users could have different service
requirements, the network could assign different weights to the
users for the rate allocation. Letβl denote the weight assigned
to the l-th user. The weighted max-min rate fairness problem
is formulated as:

maximize min
l

fl(SINRl(p))

βl

subject to Ap ≤ p̄,

p ≥ 0,

variables : p.

(5)

Then, we derive the optimal fairness solution of (5) first,
and connect (5) to the total energy minimization problem fora
given certain weightβ. Then, we address the feasibility issue
by adapting the rate demands and leveraging the admission
control. Figure 1 gives an overview of the developments and
the related optimization problems in this paper.

Max-min Fairness Rate

Optimization (5)

Algorithm 1
Total Energy

Minimization (10)

Algorithm 2

Nonlinear Perron-

Frobenius Theorem 1
Standard Interference

Approach Theorem 2

Adapting for Feasibility

Algorithm 3

Fast Admission Control with

Users Classfication

Algorithm 4

Fig. 1. An overview of optimization problems and iterative algorithms.

IV. D ISTRIBUTED POWER CONTROL ALGORITHMS

By introducing an auxiliary variableτ , we rewrite (5) as:

maximize τ

subject to
R
(

1− 2Q
(

√

SINRl(p)
))

βl
≥ τ, l = 1, . . . , L,

Ap ≤ p̄,

p ≥ 0,

variables : τ,p.
(6)

Intuitively, we could promote the communication rate by
increasing the transmit power until no further more. Therefore,
we have the following result.

Lemma 1:The optimal power solutionp⋆ of (6) satisfies
that there is at least one linkl such that(Ap⋆)l = p̄l.

Proof: See Appendix A.
Then, max-min rate problem will achieve the fairness just as

a result of “Bucket Theory”. Therefore, we have the following
result.

Lemma 2:
R
(

1− 2Q
(

√

SINRl(p⋆)
))

βl
for all l are equal.

Proof: See Appendix B.
Now we propose the following algorithm. Letk index the

iteration number.

Algorithm 1: Max-min Rate Fairness Control Algorithm.

1) Initialize an arbitraryp(0) in feasible power budgets and
a small positiveǫ.

2) Update the transmit power for each link:

pl(k + 1) =
βl

R
(

1− 2Q
(

√

SINRl(p(k))
))pl(k).

(7)
3) Normalization of power:

pl(k + 1) =

(

min
j

p̄j
(Ap(k + 1))j

)

pl(k + 1). (8)

4) Go to Step 2 until‖p(k + 1)− p(k)‖2 ≤ ǫ.

Theorem 1:p(k) in Algorithm 1 converges to an optimal
solution of (6) from anyp(0) > 0. Moreover,p(k) converges
geometrically fast.
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Proof: See Appendix C.
Remark 1:The power update (7) is distributed

based on the current power and rate forl-th user, as
R
(

1− 2Q
(

√

SINRl(p(k))
))

denotes the current rate.
The normalization (8) can be made distributed using
gossip algorithms [22]–[24]. The necessity of transmitting
information at each iteration may slow down the convergence.

Remark 2:The function (7) is concave when the value
of SINR is less than two, that theoretically guarantees the
convergence of Algorithm 1. It is interesting to note that the
following second-order derivative is below a small positive
thresholdǫ and:

lim
SINRl(p)→∞

∇2 βl

R(1− 2Q(
√

SINRl(p)))
SINRl(p)

= lim
SINRl(p)→∞

√

SINRl(p)

eSINRl(p)

= 0,
(9)

which leads to the convergence of Algorithm 1 for the large
value ofSINR.

V. TOTAL ENERGY CONSUMPTION

In this section, we consider the problem of minimizing
the total energy consumption subject to given data rate
requirements and individual power budgets in the wireless
networks, which is formulated as follows:

minimize

L
∑

l=1

pl

subject to R
(

1− 2Q
(

√

SINRl(p)
))

≥ r̄l, l = 1, . . . , L

pl ≤ p̄l, l = 1, . . . , L

p ≥ 0,

variables : p,
(10)

wherep̄l is the budget of the transmit power for thel-th user
and r̄l > 0 is the rate demand of thel-th user. In general, (10)
may or may not be feasible. This means that it may not be
possible to have the data transmission rates of all the usersto
be larger than̄r in (10).

We first address (10) by leveraging the standard interference
function framework introduced in [13], [25] when (10) is
feasible. We propose a distributed fixed-point algorithm to
compute the optimal solution of (10).

Algorithm 2: Total Energy Minimization Algorithm.

pl(k + 1) = min







r̄l

R
(

1− 2Q
(

√

SINRl(p(k))
))pl(k), p̄l







.

(11)

Theorem 2:Starting from any initial point p(0),
Algorithm 2 converges geometrically fast to an optimal
solution of (10) when (10) is feasible.

Proof: See Appendix D.
However, when (10) is infeasible, the power control has to

tackle the infeasibility issue. It is interesting to note that the

infeasibility is caused by high demanded ratesr̄, due to the
nature budget̄p of the communication power. By leveraging
the results in the previous sections, the users have the common
rate fairness, i.e., the optimal value of (5) regardless of their
own demanded rates̄r. In order to distinguish from the
power p in (10), we introducez as the auxiliary variable
which denotes the virtual power corresponding to (5). In
other words, (10) must be feasible if we adapt the demanded
rates to be the optimal value of (5) for all users, i.e.,
R
(

1− 2Q
(

√

SINRl(z⋆)
))

where z⋆ denotes the optimal
power solution of (5) obtained from Algorithm 1. Intuitively,
the power can be further reduced if we keep the rate demands
for the users whose demanded rates are less than the common
rate fairness. Therefore, we propose the following adaptive
algorithm to support all users.

Algorithm 3: Adaptive Energy Minimization Algorithm.

1) Initialize an arbitraryp(0), z(0) in feasible power
budgets and a small positiveǫ.

2) Update the virtual powerz(k + 1):

zl(k + 1) =
zl(k)

R
(

1− 2Q
(

√

SINRl(z(k))
)) , ∀l.

(12)
3) Normalizationz(k + 1):

zl(k + 1) =

(

min
j

p̄j
zj(k + 1)

)

zl(k + 1). (13)

4) Update the transmit power of each user:

pl(k + 1) = min

{

min
{

r̄l,R
(

1−2Q
(√

SINRl(z(k))
))}

R
(

1−2Q
(√

SINRl(p(k))
))

×pl(k), p̄l}.
(14)

5) Go to Step 2 until‖p(k + 1)− p(k)‖2 ≤ ǫ.

Corollary 1: Starting from any initial pointz(0) andp(0),
p(k) in Algorithm 3 converges geometrically fast to the
optimal solution of (10), by replacing the righthand side of
the rate constraints in (10) withmin {r̄l, fl(SINRl(z

⋆)} where
z⋆ is the optimal solution of (5) toward the network fairness,
i.e., the convergence ofz(k).

Proof: See Appendix E.

VI. FAST ADMISSION CONTROL WITH USERS

CLASSIFICATION

In this section, we focus on the admission control based
on the optimal solution of (5) for different user sets. Finding
the optimal set of users whose rate demands can be all
satisfied is a NP-hard combinatorial problem [4]. When the
number of users is large, it is not practical to examine all the
combinations of the users to choose a feasible set with the
minimum energy consumption. The state-of-art techniques for
admission control [3], [4] use the heuristic greedy strategy to
reject one user at each time. In the following, we propose a
faster admission control procedure to admit and reject more
users at each time while the rest part of algorithms follows
the geometrical convergence.
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Theorem 3:The optimal value of (5), i.e., the network
fairness, increases when any of users in the networks are
rejected.

Proof: See Appendix F.
From Algorithm 3, we have made use of the fairness among

all the users in the networks. Intuitively, the users whose rate
demands are below this fairness should be admitted into the
communication networks. Actually, we can further deduce the
upper bound of the fairness by Algorithm 1 for all the admitted
users. It is interesting to note that the users are classifiedby
the lower and upper bounds of the network fairness into three
categories: 1)admitted userswhose rate demands are below
the lower bound of the network fairness regarding to both
the admitted users and the adaptive users, 2)adaptive users
whose rate demands may need to be adapted to the lower
bound of the network fairness, and 3)rejected userswhose rate
demands are beyond the upper bound of the network fairness
regarding to only the admitted users. Therefore, the following
fast admission control algorithm admits or rejects more users
at each time.

Algorithm 4: Fast Admission Control Algorithm.

1) Initialization:
• Initialize an arbitraryp(0) and z(0) in feasible

power budgets, a small positiveǫ and the set of
supported usersA(0) = ∅.

2) Compute the lower bound of the network fairness
considering all users (except the rejected users):

• Update the virtual powerz(k + 1):

zl(k + 1) =
zl(k)

R
(

1− 2Q
(

√

SINRl(z(k))
)) , ∀l.

(15)
• Normalizationz(k + 1):

zl(k + 1) =

(

min
j

p̄j
zj(k + 1)

)

zl(k + 1). (16)

• Go to (15) until‖z(k + 1)− z(k)‖2 ≤ ǫ.
• Admit the users intoA(t):

arg
l
r̄l < min

j
R

(

1− 2Q

(

√

SINRj(z(k))

))

,

(17)
for all l, whose rate requirements are below the
lower bound of the network fairness, i.e., the right
part in (17).

3) Compute the upper bound of the network fairness
considering only admitted users:

• Set the virtual powerzl(k) = 0, ∀l /∈A(t):
• Update the virtual powerz(k + 1):

zl(k + 1) =
zl(k)

R
(

1− 2Q
(

√

SINRl(z(k))
)) , ∀l.

(18)
• Normalizationz(k + 1):

zl(k + 1) =

(

min
j

p̄j
zj(k + 1)

)

zl(k + 1). (19)

• Go to (18) until‖z(k + 1)− z(k)‖2 ≤ ǫ.
• Reject the users for alll:

arg
l
r̄l > max

j
R

(

1− 2Q

(

√

SINRj(z(k))

))

,

(20)
whose rate requirements are beyond the upper
bound of the network fairness, i.e., the right part
in (20).

4) Find the Feasible Set:

• Go to Step 2 to update the new lower bound (see
Figure 2) after resetting the auxiliary variablezl for
the rest of users, i.e., the adaptive users, until there
are no any more rejected users.

5) Adaptive Energy Minimization:

• Update the transmit power of each admitted user
and adaptive user:

pl(k + 1) =

min







r̄l

R
(

1− 2Q
(

√

SINRl(p(k))
))pl(k), p̄l







.

(21)
• Repeat until‖p(k + 1)− p(k)‖2 ≤ ǫ.
• Update the transmit power of the adaptive users

whose rate requirements are not satisfied:

pl(k + 1) =

min







min
{

r̄l, R
(

1− 2Q
(

√

SINRl(z(k))
))}

R
(

1− 2Q
(

√

SINRl(p(k))
))

×pl(k), p̄l}.
(22)

• Repeat until‖p(k + 1)− p(k)‖2 ≤ ǫ.

Corollary 2: Starting from any initial pointz(0) andp(0),
p(k) in Algorithm 4 converges geometrically fast to the
optimal solution of (10) with the admitted users and the
adaptive users.

Proof: See Appendix G.
Remark 3:The power updates (21), (22) are distributed

based on the current power and rate for thel-th user. The
virtual power updates (15), (18), normalization (16), (19)and
classifications (17), (20) can be made distributed using gossip
algorithms [22]–[24].

Remark 4:When the total power minimization problem
in (10) is infeasible, the output from Algorithm 4 satisfies the
power budgets, and whether it satisfies the rate constraintsset
in (10) depends on the result of feasible set obtained by Step4
in Algorithm 4. When all the adaptive users’ rate requirements
are satisfied, the output from Algorithm 4 satisfies both the
power budgets and the rate constraints. In contrary, if there are
any adaptive users which need to adjust their rate requirements
to the lower bound of the network fairness, the output from
Algorithm 4 only satisfies the power budgets. The example is
shown in the next experimental section.
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Fig. 2. An illustration of Algorithm 4 for fast admission control when (10) is infeasible. The green and red circles denote the admitted and rejected users,
respectively. The yellow circle denotes the adaptive user whose rate requirement may need to be adapted.
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Fig. 3. Illustrations of the convergence of Algorithm 1 where the red line (i.e., Fairness) is the obtained optimal valueof (5). The convergence is shown for
the small and large values ofSINR in (a) and (b), respectively.

VII. N UMERICAL EXAMPLES

In this section, we evaluate the performance of the proposed
algorithms numerically. The fixed c ommunication rate is setas
R = 1 Mbps. The AWGN at the receiver, i.e.σl, is assumed
to be 5 × 10−3 W. The channel gain is adopted from the
well-known modelGjk = kd−4

jk [26], wheredj is the distance
between thej-th transmitter and its receiver, andk = 0.09 is
the attenuation factor that represents power variations due to
path loss. The budgets of the transmit power for all users are
the same, i.e.,̄pl = 2 W for all l.

Example 1:We first show the convergence of Algorithm 1
through four users in a single-cell environment. Without loss
of generality, we set the weight of all the users as the same,
i.e.,β1 = · · · = βL = 1. Moreover, we useA = I to consider

the individual power constraints for the convenience of the
comparison.

To evaluate the convergence of Algorithms 1 for the large
SINR, we demonstrate the evolution of Algorithms 1 in
terms ofSINR instead of the rate. Figure 3 (a) verifies the
geometrical convergence of Algorithm 1 for the small value
of SINR. It can be seen that Algorithm 1 can still converge
to the optimal value named as the fairness for the large value
of SINR in Figure 3 (b). Compared to the smallSINR which
is below than two, the speed of convergence is a little slower
for the largeSINR. Note that we can get the corresponding
individual rate based on givenSINR from (2), and the network
is always feasible for the max-min rate fairness problem (5).

Example 2:Secondly, we show the convergence of



7

0 5 10 15
Iteration

0

0.5

1

1.5

2

T
ra

ns
m

it 
P

ow
er

 (
W

)

Algorithm 2

User 1
User 2
User 3
User 4
p

(a)

0 5 10 15
Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
at

e 
(b

ps
)

Algorithm 2

User 1
User 2
User 3
User 4
Fairness

(b)
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Fig. 5. Illustrations of the convergence of Algorithm 2 for infeasible (10) in terms of transmit power in (a) and individual rate in (b), respectively. Each
green dashed line represents the corresponding demanded transmission rate for each user in (b).

Algorithm 2 through four users in the same environment
as Example 1. The required rate vector is̄r =
[0.356, 0.25, 0.236, 0.03], which leads to the feasible (10).
Figure 4 verifies that Algorithm 2 geometrically converges to
the optimal solution of (10) when the network is feasible.

Note that the total energy minimization problem (10)
may be infeasible, e.g., the required rate vector isr̄ =
[0.668, 0.844, 0.345, 0.78]. Algorithm 2 turns into a greedy
algorithm that converges to a point, where Users 2 and 4
transmit at their maximum power level but still do not achieve
their rate requirements as shown in Figure 5. Algorithm 2 also
converges when (10) is infeasible, but to an unpredictable
solution where not all of the users can satisfy their rate
requirements. It is observed that the users (e.g., User 3
whose rate requirement is below the fairness obtained by

Algorithm 1) can achieve its rate requirement. In contrary,the
users (e.g., Users 2 and 4 whose rate requirements are beyond
the fairness obtained by Algorithm 1) cannot achieve their rate
requirements. However, User 1 achieves its rate requirement
because User 3 transmits only on its rate demands instead of
the fairness of the network.

Example 3: It is possible to obtain different feasible sets
from different algorithms, and it is interesting to obtain the
maximum feasible set which may also not be unique. Let
the required rate vector bēr = [0.668, 0.186, 0.736, 1.28]
which leads to the infeasible (10). Then, we can support all
the users by adapting some users’ rate demands to ber̄∗ =
[0.628, 0.186, 0.628, 0.628]. Figure 6 shows that Algorithm 3
converges to the solution of (10), where User 2 reaches its
corresponding rate requirement which is below the fairness,
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Fig. 7. An illustration of the convergence of Algorithm 4 forfast admission
control in terms of individual rate when (10) is infeasible.The red solid line
(i.e., Upper bound) is the optimal value obtained by Algorithm 1 for the
network fairness with only the admitted Users 2 and 3. The reddashed line
(i.e., Lower bound) is changed from the optimal value obtained by Algorithm 1
with all users to the optimal value obtained by Algorithm 1 with the admitted
Users 2 and 3, and the adaptive User 1. Each green dashed line represents
the corresponding demanded transmission rate for each user.

and Users 1, 3 and 4 communicate on the adaptive rate0.628
Mbps as they are above the fairness obtained by Algorithm 1.

Example 4: It is interesting to note that the users’ rate
requirements which are above the lower bound of the network
fairness may also be satisfied as shown in Figure 5 (b).
Intuitively, we use the admission control to reject the users
whose rate demands are beyond the upper bound of the
network fairness as shown in Figure 2. Let the required rate
vector be r̄ = [0.85, 0.54, 0.32, 1.62] which leads to the
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Fig. 8. Average outage probability and average total power consumption
versus total number of users based on the Monte-Carlo simulations.

infeasible (10), and the channel gain is given as:

G =













0.3183 0.1744 0.1500 0.1480

0.1905 0.6659 0.1618 0.1859

0.1805 0.1577 0.4098 0.1240

0.1887 0.1029 0.1490 0.4008













. (23)

Figure 7 shows the convergence of Algorithm 4. Users 2 and
3 are admitted because their rate demands are below the lower
bound of the fairness 0.754 obtained by Algorithm 1 for Users
1, 2, and 3. User 4 is rejected because its rate demand is larger
than the upper bound of the fairness 0.93 obtained Algorithm1
for Users 2, and 3. User 1 is the adaptive user because its rate
demand is between the lower and upper bounds of the fairness,
thus its rate demand may be satisfied as Users 2 and 3 only
achieve their rate demands instead of the lower bound of the
fairness. Otherwise, the adaptive users should adapt theirrates
to the final lower bound of the network fairness.

Example 5:Compared to other approaches for larger
wireless networks, this example reports the Monte-Carlo (MC)
average results for 30 MC runs. For each MC run, transmitter
locations are randomly drawn on a 2Km× 2Km square.
For each transmitter location, a receiver location is drawn
uniformly in a disc of radius 400 meters, excluding a radius of
10 meters. The rate demands of all users follow the uniform
distribution on[0.1, 0.9]Mbps.

In Figure 8, Alg. 4 is our proposed Algorithm 4 in
Section V, Alg. [3] is the centralized removal algorithm in [3],
Alg. [7] is the distributed removal algorithm in [7] and Alg.[5]
is the heuristic removal algorithm in [5]. Figure 8 shows that
Algorithm 4 outperforms all the other approaches in terms of
denied ratio at the cost of more power consumption. Because
the global network interferences become higher due to the fact
that our algorithm supports many adaptive users besides of the
admitted users. Figure 9 demonstrates one example for thirty
classified users, i.e., admitted, adaptive, and rejected users.
Regardless of the delay from the transmitting information,
Algorithm 4 only needs a few milliseconds within average
fifty iterations in total. Note that Algorithm 4 is a double
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Fig. 9. An illustration of thirty classified users (source-destination pairs).
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respectively. The width of line denotes the corresponding rate requirement.

layer circulation. While the inner circulation geometrically
converges to the lower and upper bounds of the fairness, the
outer circulation of classification is only in single digitsfor
even one hundred users. In practice, the adaptive users have
rights to decide whether to change channel for higher quality
of service or to undertake the reduced rate for the fairness.

VIII. C ONCLUSION

In this paper, we studied the novel data rate function
based on the Signal to Interference Noise Ratio (SINR) and
Q-function directly (i.e.,Q(

√
SINR)), since the information

about BER is essential critical to improve the correctness and
performance of wireless networks. In order to guarantee the
fairness for all users, we analyzed the optimal characteristics
of the max-min rate fairness problem, and proposed a
decentralized rate control algorithm. Then, we made use of
the lower and upper bounds of the network fairness to address
the feasibility issue of a total power minimization problem
with rate constraints. We proposed a dynamic algorithm that
adapted their rate demands to minimize the total power in
a heterogeneous wireless network. Furthermore, we classified
the users into three categories, i.e.,admitted users, adaptive
usersand rejected users, so as to deal with more than one
user at each time. Numerical evaluations demonstrated thatour
proposed algorithms exhibited faster convergence behavior.

APPENDIX

A. Proof of Lemma 1

Let p⋆ be an optimal solution to (6). SupposeAp⋆ < p̄.

Now, let p̂⋆ =

(

min
l

p̄l
(Ap⋆)l

)

p⋆. Clearly, p̂⋆ is a feasible

power allocation and̂p⋆ > p⋆. Moreover, sinceSINR(αp⋆)
is strictly increasing in terms ofα, we have thatSINRl(p̂

⋆) >
SINRl(p

⋆) for all l. For the rate function (2), we have:

∂fl(SINRl(p))

∂SINRl(p)
=

R
√

2πSINRl(p)
e−SINRl(p)/2 > 0, (24)

because it is known about the first derivative ofQ-function
that:

∇Q(x) = − 1√
2π

e−x2/2. (25)

It follows fl(SINRl(p̂
⋆)) > fl(SINRl(p

⋆)) for all l, which
contradicts the optimality ofp⋆.

B. Proof of Lemma 2

Let τ⋆ be the optimal value of (6). Suppose not at optimality
and the linkl is with the largest weighted link rate, i.e.:

R
(

1− 2Q
(

√

SINRl(p)
))

βl
> τ⋆. (26)

Recall thatGlj > 0 for all l and j. It is easy to verify that
the SINRl(p) is a strictly increasing function inpl, and is a
strictly decreasing function inpj for all j 6= l. It is possible to
decreasep⋆l by a sufficiently small amountǫ > 0 such that (26)
is still satisfied by using the new transmit power for linkl, i.e.,

pl = p⋆l − ǫ. By doing so,min
j

R
(

1− 2Q
(

√

SINRj(p)
))

βj
including other links can increase. Thus, we can further
increase the value ofτ⋆ which is a contradiction to the
assumption of the optimality.

C. Proof of Theorem 1

From Lemma 2, we have that(τ⋆,p⋆) must necessarily
satisfy the following condition:

τ⋆ =
R
(

1− 2Q
(

√

SINRl(p⋆)
))

βl
, l = 1, . . . , L. (27)

Combining with Lemma 1, we cast (6) into the following
eigenvalue problem:











1

τ⋆
p⋆l =

βl

R
(

1− 2Q
(

√

SINRl(p⋆)
))p⋆l

Ap⋆ ≤ p̄,

(28)

and τ⋆ is maximal. Note that (28) is necessary but not
sufficient for optimality unless the resultingτ⋆ is maximal.
However, we can show that there is a unique solution
to (28) under given condition so that this necessary condition
is also sufficient based on the nonlinear Perron-Frobenius
theorem [27], [28]:

Let ‖ · ‖ be a monotone vector norm1 on RL andS = {x ∈
RL

≥0 : ‖x‖ = 1}. Let f : RL
≥0 → RL

≥0 be a concave map2 with
f(x) > 0 for x � 03. Thenf has a unique eigenvectorx⋆ ∈ S.
Furthermore,x⋆ is the unique fixed point of the normalized

mapu : S → S defined byu(x) =
f(x)

‖f(x)‖ and all the orbits

of u converge geometrically fast tox⋆ from any initial point
x(0) � 0.

1The vector norm‖ · ‖ is monotone means‖x‖ ≥ ‖y‖ if x ≥ y ≥ 0.
2A mappingf : RL

≥0
→ RL

≥0
is concave iff(αx+(1−α)y) ≥ αf(x)+

(1− α)f(y) for all 0 ≤ α ≤ 1.
3x � y implies xl ≥ yl for 1 ≤ l ≤ L andx 6= y.
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derivative for the function ofg(SINRl(p)) in terms ofSINRl(p).

We next show that:

ul(p) =
βl

R
(

1− 2Q
(

√

SINRl(p)
))pl

=
βlSINRl(p)

R
(

1− 2Q
(

√

SINRl(p)
))





∑

j 6=l

Gljpj + σl



 ,

(29)
is concave on the positive domain, which implies that (28)
has a unique solution which can be found using a fixed-point
iteration (c.f. Lemma 5 in [29]). To show thatul(p) is concave,
we need the result from (c.f. Lemma 4 in [29] based on [30]),
followed from the fact that the perspective and the affine
composition of a function preserves the concavity of the
function. Letting:

g(SINRl(p)) =
βl

R(1− 2Q(
√

SINRl(p)))
SINRl(p). (30)

Since:

∇g(x) =
βl

R
× 1− 2Q(

√
x)−

√

x
2π e

−x/2

(1− 2Q(
√
x))2

, (31)

and:

∇2g(x) =
βl

R
e−x/2 ×

x−3
2 (1− 2Q(

√
x)) +

√

2x
π e−x/2

(1− 2Q(
√
x))3

√
2πx

,

(32)
for x > 0, therefore:

∇2g(x) |x=SINRl(p)=
βl

R
e−SINRl(p)/2×

SINRl(p)−3
2 (1− 2Q(

√

SINRl(p))) +
√

2SINRl(p)
π e−SINRl(p)/2

(1 − 2Q(
√

SINRl(p)))3
√

2πSINRl(p)
.

(33)
It can be seen that (30) is concave when the value

of SINRl(p) is below the threshold of near two, and
nondecreasing which is shown in Figure 10. Even though
the second-order derivative value is positive for largeSINR,
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Upper bound in (30)

Fig. 11. The upper bound on theQ-function (3) as given by (37).

it is still below a certain small positive valueǫ. is concave
as SINRl(p) is concave andg(SINRl(p)) is concave and
nondecreasing.

Since g(SINRl(p)) is concave, it follows thatul(p) is
concave. Hence, we use the normalized fixed-point iteration
to computep⋆:

p(k + 1) =
u(p(k))

‖u(p(k))‖A∞,p̄

, (34)

which converges geometrically fast top⋆ for any p(0) > 0.
This iteration can be rewritten as Steps 2 and 3 of Algorithm 1.
Note that Step 3 always gives a feasible power allocation.

D. Proof of Theorem 2

The burden of proof lies in the standard interference
function framework of [13]. Thus, we first introduce it before
showing how it is applied.

Definition 1: An interference functionI(p) is standard if,
for all p ≥ 0, the following properties are satisfied4:

• Monotonicity: If p1 ≥ p2, thenI(p1) ≥ I(p2).
• Scalability: For allα > 1, αI(p) > I(αp).
Lemma 3: If p is a feasible power vector, thenI(p) is a

monotone increasing sequence of feasible power vector in a
fixed-point iteration that converges to the unique fixed point
p⋆ that satisfies:

p⋆ = I(p⋆). (35)

Lemma 4:Let D ⊆ RK andf : D → R be such that for all
x ∈ D, ∂f

∂xl
, l = 1, . . . , L exist onD. Thenf is monotonically

increasing onD if and only if ∂f
∂xl

≥ 0, l = 1, . . . , L.
Lemma 5:Let:

Il(p) =
r̄l

R
(

1− 2Q
(

√

SINRl(p)
))pl. (36)

4Notice that, even thoughp ≥ 0 was required in [13], the results hold
equally for justp > 0. Moreover, notice that positivity (i.e.,I(p) > 0) was
required explicitly in [13], but can actually be implied by monotonicity and
scalability since the latter two yieldαI(p) > I(αp) ≥ I(p), for α > 1.
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The interference functionI(p) is standard [13].
This means thatI(p) satisfies the three properties of the

standard interference function:

• Positivity: Since the transmit powerp is positive and the
Q-function (3) is known to beQ(x) < 0.5 for x > 0, we
haveIl(p) is positive.

• Scalability: We scale each user’s power byα > 1. Then,
we haveSINRl(αp) > SINRl(p). Using the chain rule of
differentiation, we have∂fl(SINRl(p))/∂SINRl(p) > 0.
Thus, we havefl(SINRl(αp)) ≥ fl(SINRl(p)). Then, we
get Il(αp) < αIl(p) because of the positivity.

• Monotonicity: From Lemma 4, if we can verify that
∂Il(p)
∂pj

≥ 0 for all j, then the monotonicity ofIl(p)
is guaranteed. Furthermore, the monotonicity ofI(p) is
guaranteed.

– If j = l, we have∂Il(p)/∂pl ≥ 0 which is always
satisfied by being equivalent to:

Q(
√

SINRl(p))

≤ 1

2
− SINR

m
l (pm)

2
√

2πSINRm
l (pm)

e−SINR
m
l (pm)/2,

(37)
as shown in Figure 11.

– If j 6= l, similarly, we have∂Iml (pm)/∂pmj ≥ 0.

Furthermore, the functionI(p) = min{I(p), p̄} is still
standard [13]. Therefore, the convergence of Algorithm 2 is
guaranteed.

E. Proof of Corollary 1

Theorem 1 proves the convergence ofz(k) in Steps 1 and
2 of Algorithm 3. Theorem 2 proves the convergence ofp(k)
in Step 3 of Algorithm 3.

F. Proof of Theorem 3

From (1) and (24), it is easy to verify that thel-th users’
rate function (2) is a strictly increasing function inpl, and is
a strictly decreasing function inpj for j 6= l. We can reduce
the powerpl to be zero, which is regarded as being rejected
from the networks. By doing so, all the other users’ rates
are increased while thel-th user’s rate reduces to be zero. In
other words, the interference in the networks is reduced when
the users are rejected. In particular, the rejected users with
zero rates are not taken into consideration when we obtain
the optimal value of (5), i.e., the network fairness. Thus, the
fairness obtained from Algorithm 1 will be larger after the
users are rejected.

G. Proof of Corollary 2

Theorem 1 proves the convergence ofz(k) in Step 2 and
3 of Algorithm 4. Theorem 2 and Corollary 1 prove the
convergence of Algorithm 2 in Step 5 of Algorithm 4. The
convergence of Step 4 is guaranteed by the limited number of
users and Theorem 3.
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